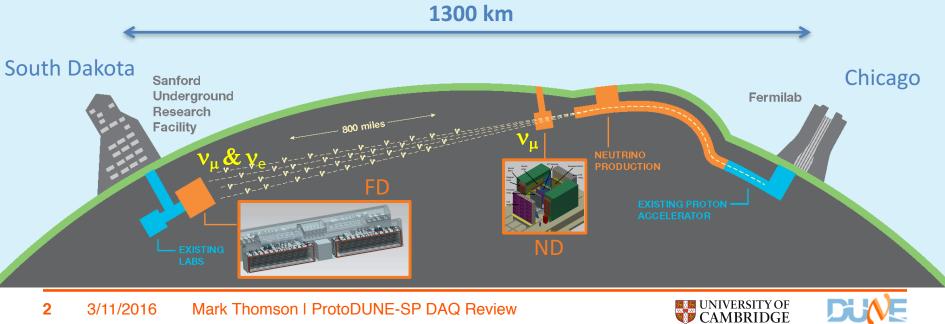


ProtoDUNE-SP: Introduction, Aims and Physics Goals

Mark Thomson

On behalf of the DUNE collaboration

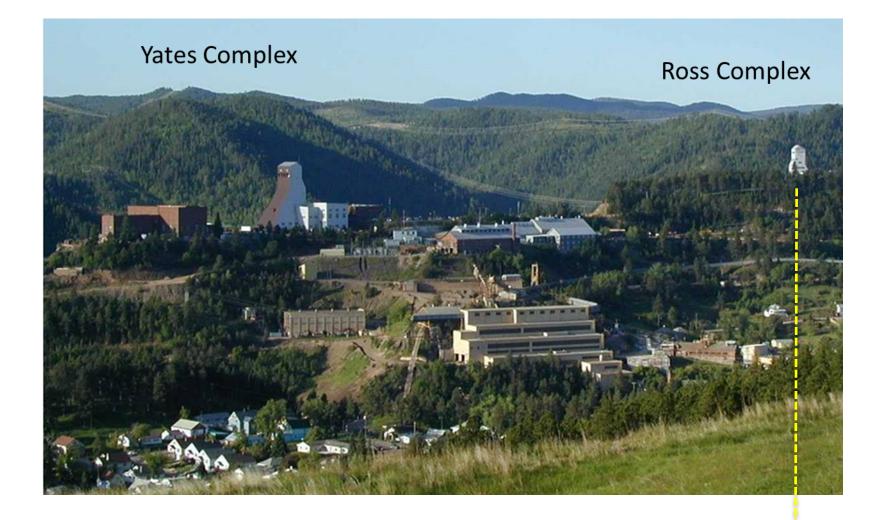
ProtoDUNE-SP DAQ Review, 3rd November 2016



1) Introduction

★LBNF/DUNE will consist of:

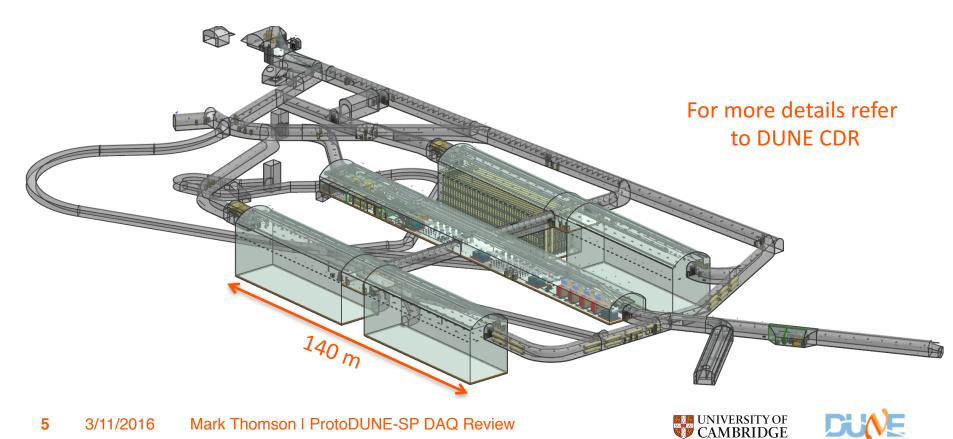
- Muon neutrinos/antineutrinos from high-power proton beam
 - **1.2 MW** from day one (upgradeable)
- Large underground Liquid Argon Time Projection Chamber
 - 4 x 17 kton i fiducial (useable) mass of >40 kton
- Large near detector to characterize the beam


Medium-term goals

DUNE is committed to delivering:

- Two large-scale engineering prototype detectors (protoDUNE-SP and protoDUNE-DP) operational at CERN in 2018
- DUNE TDR for the DOE CD-2 and LBNC Reviews in 2019
- 20-kt Far Detector fiducial mass ready for beam in 2026
 - Two 10-kt detector modules (not necessarily the same design)
- Near detector system(s) operational in time for first beam
- The detailed implementation strategy for 2016 2019 was approved by DUNE-EC in June 2016

Far Detector Strategy



Staged Approach to 40 kt (fiducial)

- Four chambers hosting four independent 10-kt FD modules
 - Flexibility for staging & evolution of LAr-TPC technology design
 - Assume four identical cryostats: 15.1 (W) x 14.0 (H) x 62 (L) m³
 - Assume the four 17-kt modules will be similar but **not identical**

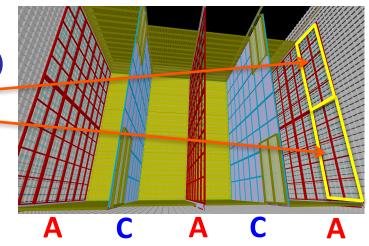
Staged Approach to 40 kt (fiducial)

- Four chambers hosting four independent 10-kt FD modules
 - Flexibility for staging & evolution of LAr-TPC technology design
 - Assume four identical cryostats: 15.1 (W) x 14.0 (H) x 62 (L) m³
 - Assume the four 17-kt modules will be similar but not identical

Collaboration considering two LAr readout technologies

- Single-Phase (Ionization read out in the Liquid Ar)
 - Demonstrated by ICARUS & MicroBooNE
 - Basis of first 17-kt detector module
- Dual-Phase (Ionization amplified and read out in Gas Ar)
 - Pioneered by WA105 (protoDUNE-DP)
 - Option for second and/or subsequent detector modules

Large-scale prototypes at CERN are seen as critical


– protoDUNE–SP & protoDUNE-DP

Staging strategy

First far detector module:

- Modular implementation of Single-Phase TPC
 - Active volume: 12m x 14m x 58m
 - 150 Anode Plane Assemblies (APA)
 - 200 Cathode Plane Assemblies
 - Cathode @ -180 kV for 3.5m drift

View 1: Event display (run 14456, event 8044)

S/N≈100

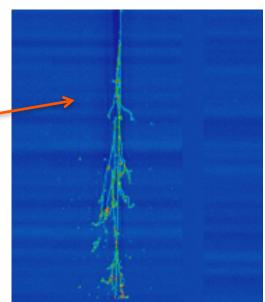
DP Readout

Second & subsequent far detector modules

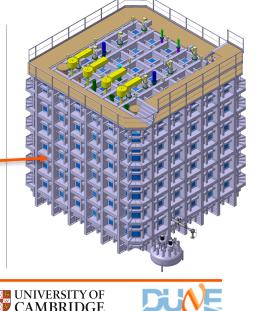
- Not assumed to be exactly the same, could be:
 - Evolution of single-phase design
 - Dual-phase readout potential benefits

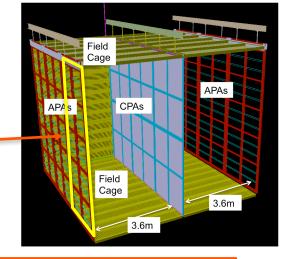
e.g. single-phase APA/CPA LAr-TPC:

- Design is already well advanced evolution from ICARUS
- Supported by strong development program at Fermilab
 - 35-t prototype (run ended 03/2016)


tests of basic design-

e.g. single-phase APA/CPA LAr-TPC:


- Design is already well advanced evolution from ICARUS
- Supported by strong development program at Fermilab
 - 35-t prototype (run ended 03/2016) tests of basic design
 - MicroBooNE (operational since 2015) -
 - SBND (aiming for operation in 2018)


e.g. single-phase APA/CPA LAr-TPC:

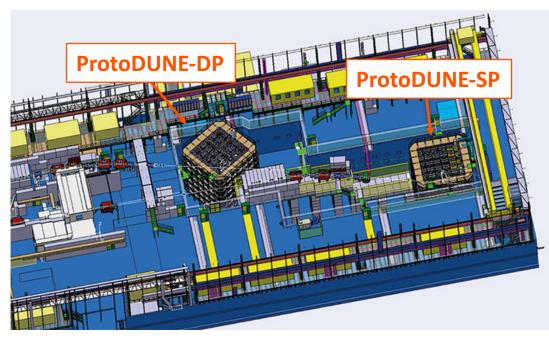
- Design is already well advanced evolution from ICARUS
- Supported by strong development program at Fermilab
 - 35-t prototype (run ended 03/2016) tests of basic design
 - MicroBooNE (operational since 2015)
 - SBND (aiming for operation in 2018)
- 2 "Full-scale" prototypes (protoDUNEs) at the CERN Neutrino Platform
 - Single-Phase & Dual-Phase
 - Engineering prototypes, e.g. <u>SP</u>:
 - 6 full-sized drift cells c.f. 150 in the far det.
 - Aiming for operation in 2018

e.g. single-phase APA/CPA LAr-TPC:

- Design is already well advanced evolution from ICARUS
- Supported by strong development program at Fermilab
 - 35-t prototype (run ended 03/2016) tests of basic design
 - MicroBooNE (operational since 2015)
 - SBND (aiming for operation in 2018)
- 2 "Full-scale" prototypes (protoDUNEs) at the CERN Neutrino Platform
 - Single-Phase & Dual-Phase
 - Engineering prototypes, e.g. <u>SP</u>:
 - 6 full-sized drift cells c.f. 150 in the far det.
 - Aiming for operation in 2018

CERN North Area: 27/4/2016

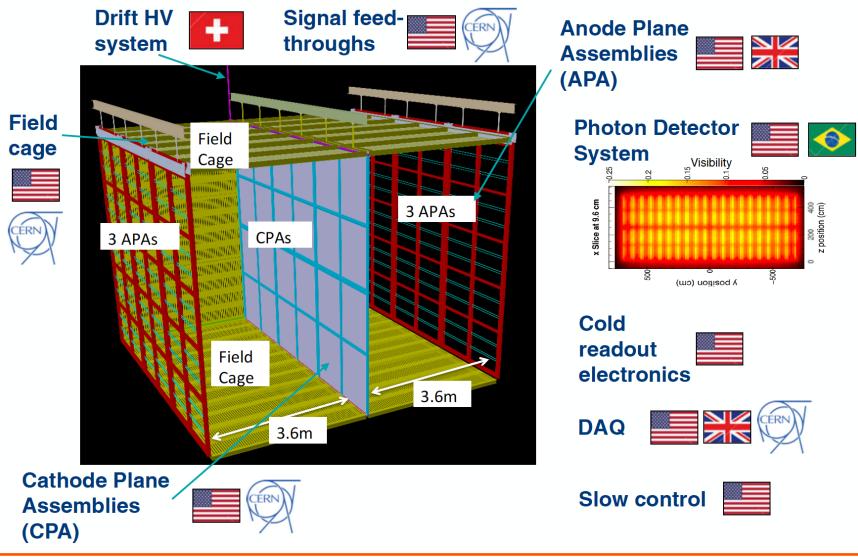
CERN North Area: 5/9/2016



CERN Neutrino Platform

CERN support of international neutrino program

- **Major** CERN infrastructure investment for DUNE:
 - New building: EHN1 extension in the North area
 - Two tertiary charged-particle beam lines
 - Two large (8x8x8m³) cryostats & cryogenic systems



Beneficial occupancy

ProtoDUNE-SP Responsibilities

ProtoDUNE-SP Elements

ProtoDUNE-SP consists of:

- Six APAs (readout wire planes) ~15,000 channels @ 2 MHz
 - Identical to planned first FD module
- Cathode plane/Field Cage/HV feedthrough
 - Identical to planned first FD module
- Photon Detection Systems ~240 channels @ 150 MHz
 - Bars embedded in the APAs
 - Possible design for the FD but still an area of R&D
- DAQ
 - ATCA-based RCE readout (SLAC) used for DUNE 35-t prototype
 - Not likely to be the exact FD read out system (cost)
 - Also desire to test FELIX readout at ProtoDUNE-SP
 - Decision was to operate in triggered mode (different to far detector)

3) ProtoDUNE-SP: Strategic aims

DUNE

Strategic view of protoDUNE program

- Large-scale prototyping/calibration
 - Production (delivery of the detector components to CERN):
 - stress testing of the production and quality assurance processes of detector components
 - mitigate the associated risks for the far detector.
 - Installation:
 - test of the interfaces between the detector elements
 - mitigate the associated risks for the far detector.
 - Operation (cosmic-ray data):
 - validation of the detector designs and performance
 - Test beam (data analysis):
 - essential detector and physics calibration benchmarks
 - not necessary for the finalization of the FD.

Strategic view of protoDUNE program

- Large-scale prototyping/calibration
 - Production (delivery of the detector components to CERN):
 - stress testing of the production and quality assurance processes of detector components
 - mitigate the associated risks for the far detector.
 - Installation:
 - test of the interfaces between the detector elements
 - mitigate the associated risks for the far detector.
 - Operation (cosmic-ray data):
 - validation of the detector designs and performance.
 - Test beam (data analysis):
 - essential detector and physics calibration benchmarks
 - not necessary for the finalization of the FD.

Engineering risk mitigation for CD-2

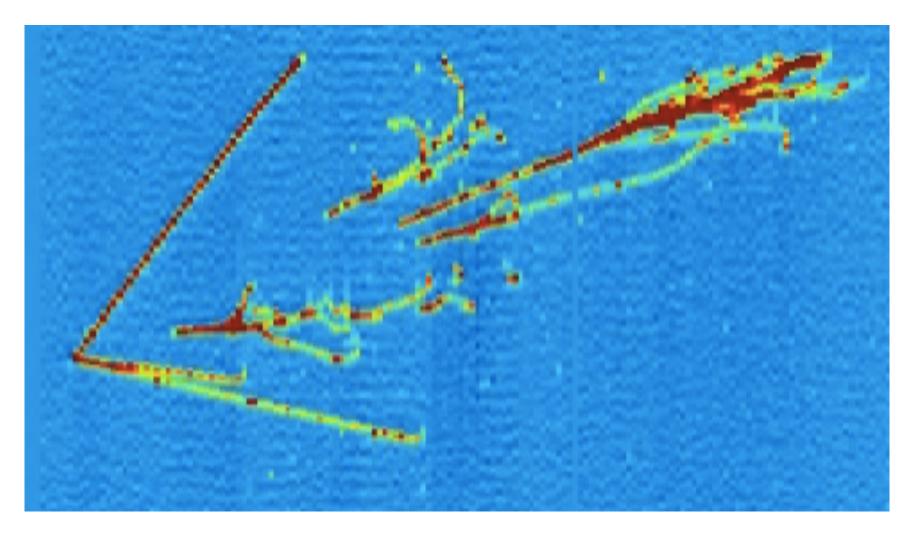
Physics calibration

for oscillation analyses

Strategic view of ProtoDUNE-SP DAQ

ProtoDUNE-SP data will validate the LAr-TPC design

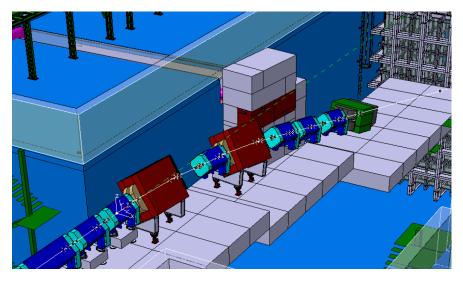
- Important/essential input to CD-2/3B in October 2019
- DAQ for ProtoDUNE-SP is not assumed to be same as for Far Detector
 - Cost
 - Different operating conditions


➡ use tried-and-tested low-risk approach

Adopted SLAC RCE system as baseline for ProtoDUNE-SP

- Relatively little hardware development needed
- Not foreseen as the final system for the far detector due to costs
 - but tests architecture for a possible cost-optimised version
- Agreed to include R&D DAQ path for FELIX system
 - FELIX will be used to read out up to 20 FEBs
 - Should be non-invasive, must not compromise/complicate RCE-based data flow

4) DAQ Requirements (Physics)



Want to record

Beam triggers

- 0.5 GeV 7 GeV for a variety of particle types
- A trigger rate of 25 Hz (in spill) is sufficient for anticipated program

- Cosmic-Ray triggers
 - For calibrating, understanding detector, e.g. space-charge effects
- Beam information
 - PID systems, etc.

DAQ Requirements from Physics

Run plan

- 6M beam triggers in 3-month period prior to LS2 shutdown
- Anticipate cosmic-only running in 2019
- Running beyond 2019 (if any) to be discussed with CERN management

Constraints

- Data links out of ENH1
- Cost of disk/tape

Considerations led to an agreed "DAQ scenario"

Parameter	Value
Trigger rate	25 Hz
Spill duration	4.8 s
SPS Cycle	22.5 s
Readout time window	5 ms
# of APAs to be read out	6
Single readout size (per trigger)	230.4 MB
Lossless compression factor	4
Instantaneous data rate (in-spill)	$1440{\rm MBs^{-1}}$
Average data rate	$576 \text{MB} \text{s}^{-1}$
3-Day buffer depth	300 TB

Physics Measurements

ProtoDUNE-SP measurements have three main goals

- Validate detector design/performance
 - e.g. establish S/N, argon purity, ...
 - Can be achieved with cosmic-ray data
 - Needed in time of TDR reviews (LBNC and DOE CD-2/3B)
- Calibrate detector response to known charged-particles in energy range relevant to DUNE FD neutrino interactions (0.5 – 5 GeV)
 - e.g. understanding calorimetric measurements in LAr
 - Requires beam data
 - Needed for ultimate physics program
- **Measurement** of particle interactions in argon to provide data to improve modeling in the simulation
 - e.g. measurement of pion interaction cross sections/processes.
 - Requires beam data
 - Needed for ultimate physics program

Preliminary Run Plan

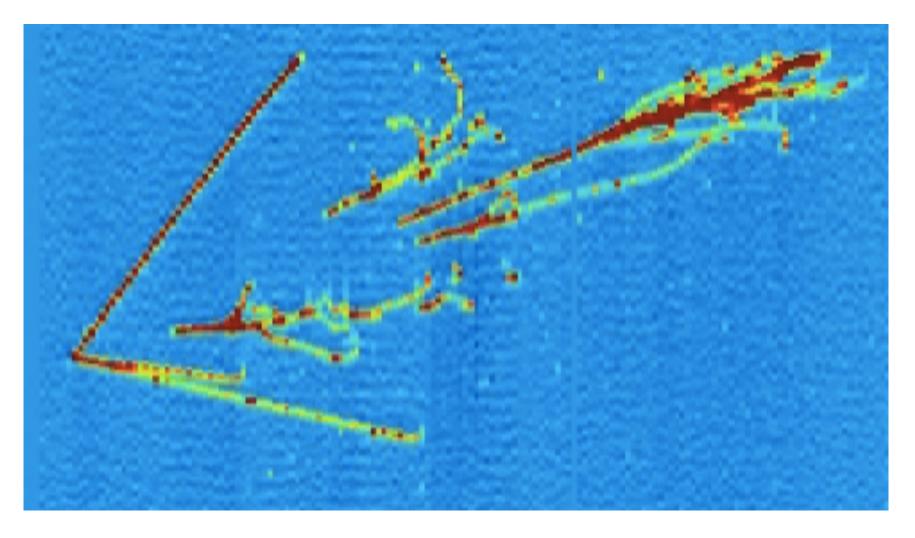
Assumptions

- Trigger rate (in spill) = 25 Hz
- **Duty cycle = 0.2** two 4.8 s spills per 48 s SPS super cycle
- Electron triggers in hadron beam pre-scaled to 0.5 Hz
- Both +ve and -ve beam operation

Operational efficiency (detector + beam availability) = 50 %

Р	# of	$\# \text{ of } e^+$	$\#$ of K^+	$\# ext{ of } \mu^+$	# of p	$\# \text{ of } \pi^+$	Total #	Beam Time
(GeV/c)	Spills						of Events	(days)
1	70K	84K	≈ 0	70K	689K	625K	1.5M	19.4 days
2	16K	19K	9K	36K	336K	572K	1.0M	4.4 days
3	13K	16K	26K	17K	181K	540K	780K	3.6 days
4	11K	13K	19K	16K	107K	510K	660K	3.1 days
5	11K	13K	29K	13K	96K	510K	660K	3.1 days
6	11K	13K	36K	12K	94K	510K	660K	3.1 days
7	11K	13K	42K	8K	87K	510K	660K	3.1 days
Total	143K	171K	161K	172K	1.6M	3.8M	5.9M	39.7 days

Hadron beam (+ve)


Momentum Bins	# of Spills per Bin	$\# e^+$ per Bin	Beam Time per Bin
(GeV/c)			(days)
0.5, 06, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7	5000	300K	1.4

High-purity electron beam (+ve)

• Can be achieved (+ve and -ve) in a 120 day run period

5) Summary

Summary

- ProtoDUNE-SP is an essential part of the DUNE plan
 - Engineering Validation
 - Physics Calibration
- Data volumes are large
 - Continuous TPC readout at 2 MHz (for 5ms around trigger)
 - PDS readout at 150 MHz
- Adopted a tested relatively low-risk solution
 - SLAC RCE system + FELIX R&D stream
 - **25 Hz trigger rate** (in spill)
- DUNE has assembled a strong and experienced DAQ team
 - We are confident that we can deliver on schedule

