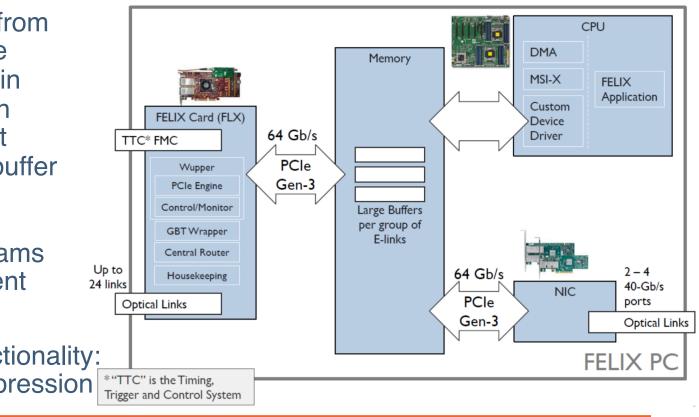
TPC readout using FELIX

Frank Filthaut (for the FELIX team: Nikhef, CERN, PNNL) **ProtoDUNE DAQ review** 3-11-2016

Review documentation: DUNE-doc-1846

Nichef Radboud Universiteit Nijmegen

Contents


- Design
 - Data
 - Software
- Interfaces summary
- Implementation
 - Hardware
 - Numbers
- Status
- Risks
- Plans
- Conclusion

Ni

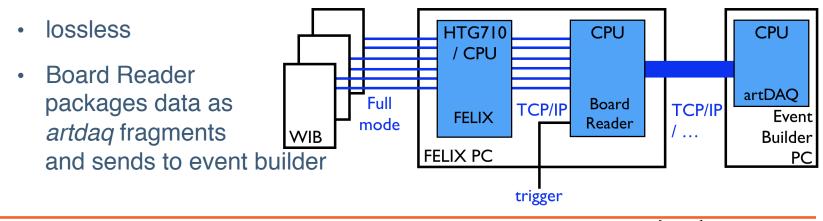
ef

Design

- FELIX (Front-End Link EXchange): PC-based solution using COTS hardware / networking at as early a stage as possible
- Development initially within ATLAS
 - data arriving from front-ends are de-serialised in firmware, then DMA'd to host PC memory buffer
 - e.g. 16 GB
 - software streams data to different outputs
 - add'l s/w functionality: filtering, compression

Design: data

- Transmission format: FELIX Full mode
 - 9.6 Gb/s (7.68 Gb/s payload), 32-bit words; 8b/10b encoding
- Draft data format: one 120-word frame / 500 ns (256 channels, from 4 COLDATA ASICs; 2 links / Warm Interface Board)
 - ongoing discussion: transmission of (calibrated) time-stamp information word X Y 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 Reset Count[23:0] Stream ID

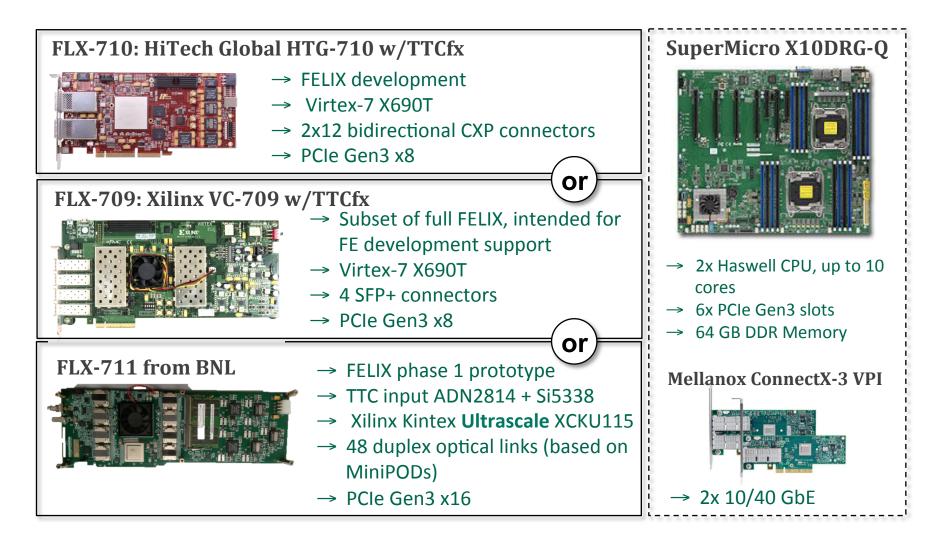

3-11-2016

4

Radboud Universiteit Nijmegen

Design: software

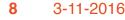
- One software thread per input link, pushing the link's data onto a separate network queue (standard FELIX functionality)
- ProtoDUNE: networking to BoardReader using loopback (different process(es), possibly on different CPU)
 - BoardReader uses time-stamps (network messages from the trigger & timing system) to pass only the data in triggered time-windows (5 ms); 25 Hz → 1/8 of data
 - BoardReader compresses data (further reduction by factor 4–5?)



Interfaces summary

- TPC readout electronics:
 - Collect inputs from 1 APA (5 Warm Interface Boards)
 - Data format (slightly) different from that sent to RCE
- Back-end computing:
 - Send data as *artdaq* fragments to EventBuilder: 10 Gb/s ethernet
 - artdaq BoardReader integrated in FELIX system (even if not part of FELIX itself)
 - Also a natural place for online monitoring, to be investigated
- Timing/trigger:
 - Network messages from the trigger & timing system
- Constraints:
 - Data throughput per CPU limited to ~ 50 Gb/s by Gen-3 8-lane PCIe
 need 2 systems
 - 3 when using one VC709 card / PC, possibly 1 when using BNL-711 card

Implementation: hardware



Implementation: numbers

Quantity	Number
Channels	2560 (1 APA)
Input links	10 (= 5 WIBs × 2 links/WIB)
FELIX systems	2 (1 VC-709 + 1 HTG-710)
Input rate (payload) [Gb/s]	76.8 (= 30.7 + 46.1)
Input rate (data) [Gb/s] (*)	75.5 (= 30.2 + 45.3)
Board Reader output data rate [Gb/s] (**)	2.4 (= 0.96 + 1.44)

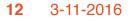
- Nominal design: two systems using commercial FELIX cards
- (*) ignore 2 out of 120 data words (2 filled by FELIX firmware)
- (**) assume that BoardReader can handle both trigger filtering and data compression
 - readout fraction: $25 \text{ Hz} \times 5 \text{ ms}$ time window = 0.125
 - compression: factor 4

Status

- Hardware (except BNL-711 card) available
 - in the Nikhef case, shared with core FELIX setup
 - 2nd BNL-711 version (minor improvements & bug fixes) under test, 3rd version to be produced soon
- Optical links (on the BNL-711 card) tested to run up to 12.8 Gb/s
- PCIe Gen-3 16-lane throughput of 101.7 Gb/s measured (from the BNL-711 card)
 - close to earlier measurements using 1 or 2 PCIe Gen-3 8-lane connections: ~ 50 Gb/s per PCIe interface, single shot DMA transfers
- First tests of FELIX "Full mode" done
- Extensive suite of software tools

Status

- Nikhef FELIX "playground" and detail •
 - TTC not relevant to ProtoDUNE


Risks

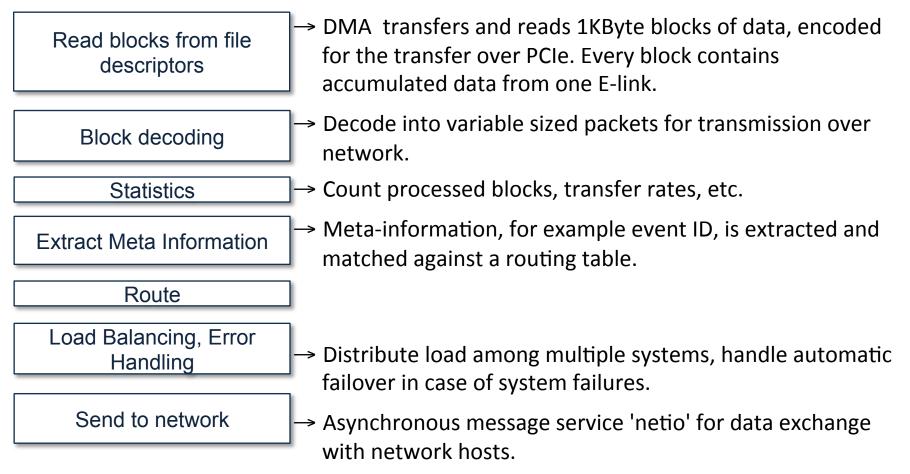
- Trigger filtering too time-consuming for BoardReader running on the same CPU (unlikely)
 - run on a separate CPU (dual CP host) or in a separate PC (requires high-bandwidth NIC, which may otherwise not be needed)
- (Efficient) data compression too time-consuming for BoardReader running on the same CPU (compression algorithms being studied)
 - run on a separate CPU or PC (or offload BoardReader)
 - or a mixture of BoardReaders running on the same and different PCs
 - run in firmware (wire by wire, as for RCE; affects firmware development)

Plans

- Emulation of data sent by WIB in FELIX "Full mode" to be done in integrated environment (Nikhef, CERN; February 2017)
- Addition of BoardReader application (Nikhef, CERN; July 2017)
 - buffering, reception of trigger time-stamp, trigger filtering
 - data compression
 - starting to evaluate (offline) different libraries (e.g. Zstd) for software compression
 - packaging as *artdaq* fragments
 - testing of throughput and memory usage; choice of configuration
- Pursue alternative of compression in firmware (PNNL; end 2017)
- Note: (ATLAS) FELIX Final Design Review on November 11

Conclusion

- Very versatile design based on (solely or mostly) COTS hardware & networking
 - Nominal design (2 systems) should allow for a configuration that comfortably fits bandwidth limitations. In case of unforeseen limitations (biggest unknown: compression), hardware can be easily added
 - at most a few PCs
 - Relies heavily on core FELIX development taking place within ATLAS
 - ongoing (but but very advanced) project
 - On the ProtoDUNE specific side, the work is mostly on software (BoardReader)
 - apart from the option of compressing data in firmware


Finally...

- This presentation (and actual work) targets operation at 25 Hz trigger rate
- However, the system will be versatile enough to adapt to other configurations (e.g., trigger-less readout as desired for DUNE, or higher trigger rates)
 - of course these other configurations may require additional hardware

(Generic) FELIX Software data path

• (from Andrea Borga)

Interfaces summary

- FELIX based readout:
 - Collect inputs from 1 APA (5 Warm Interface Boards)
 - Apply trigger filtering (based on network messages from the trigger & timing system) and data compression
 - Package as artdaq fragments and send to event builder
- Constraints:
 - Input link speed (in *Full mode*): 9.6 Gb/s → 2 links / WIB
 - Data throughput per CPU limited to ~ 50 Gb/s by Gen-3 8-lane PCIe
 → need 2 systems
 - 3 when using one VC709 card / PC, possibly 1 when using BNL-711 card

