
	 -‐	 1	 -‐	

Wesley Ketchum (FNAL)
ProtoDUNE SP Run Control, Operational Monitoring, and Configuration, V1.1
ProtoDUNE SP DAQ Design Review Documentation
27 October 2016

Run Control, Operational Monitoring, and Configuration:
ProtoDUNE SP DAQ Design Plans

The ProtoDUNE SP DAQ will use a collection of tools currently in use for
accomplishing its run control, operational monitoring, and configuration
management. Many of these tools are already in use by the artdaq software suite
and benefit from support from artdaq and 35-ton DAQ experts, while others are in
common use at CERN and benefit from existing operational expertise at the host lab.
In this section, we describe in detail the design plan for implementing these tools into
a fully operational DAQ system.

Run Control

Requirements

The run control software for protoDUNE SP needs to satisfy the following
requirements:

• as artdaq is the core framework for the DAQ event-building software, it must
start, stop, and monitor the artdaq processes, and push them through their
states, ideally via the existing control structures currently in use in artdaq;

• it must provide a clean and simple interface to shifters/operators;
• and, it must allow for including and excluding individual components, and

allow for partitioning to run two or more subsystems independently.
We have chosen to use the JCOP (Joint Controls Project) framework in common use
at CERN, which uses the WinCC-OA (previously called PVSS) supervisory control
and data acquisition system at its core. The JCOP system, with additional
development of a DAQ interface to the artdaq system, satisfies the above
requirements and carries with it the added benefit of expertise and support available
at CERN.

artdaq control tools

The artdaq software suite contains tools for starting and stopping artdaq processes,
and sending state transition requests to configure, start, and stop the data-taking
functions of those processes. This section will contain a brief description of these
elements, and describe the interface layer being developed to allow a connection to
the JCOP run control system.

artdaq contains a common Process Management Tool (PMT) that can take a DAQ
systems architecture configuration and start all the necessary artdaq processes
(BoardReaders, EventBuilders, Aggregators, etc.). Inside the PMT, calls to start and
manage these processes are made via mpirun, which assigns MPI ranks to each of

	 -‐	 2	 -‐	

the processes that in turn are used to control the data flow from BoardReaders to
EventBuilders and EventBuilders to Aggregators. MPI, the Message Passing
Interface messaging system used for passing data between independent threads or
processes, is currently used as the data transfer mechanism in artdaq. In the future,
as artdaq makes available alternative data transfer mechanisms, the underlying calls
in the PMT may be modified to not use mpirun. The systems architecture
configuration consists of a list of desired processes, which DAQ node those
processes should run on, and a port number on that node to be used for sending and
receiving control messages. The PMT, technically, is a simple Ruby script that can
be launched from a command-line or as part of other scripts.

Control messages and responses are sent using the XML-RPC (eXtended Markup
Language Remote Procedure Call) protocol. Typical control messages request state
transitions to be accomplished or request the status (existing state) of the artdaq
processes, including the PMT. Parameters are also passed in these control
messages: for instance, the daq.init command is used to initialize and configure the
artdaq processes, and takes as an argument a string in FHiCL format (see the
“configuration” section below) to be used for configuration parameters. XML-RPC
commands can be launched from the command line or as part of other programs---
APIs for issuing XML-RPC calls exist for many languages, and Ruby-based control
scripts exist as part of the artdaq-demo that use such APIs.

Typically, deployed artdaq systems use simple, experiment-specific interface
programs in their run control systems, acting as a layer between an operator-facing
program and the underlying PMT/XML-RPC calls. In the DUNE 35-ton prototype, this
was simply called the DAQInterface. We plan to deploy a simple interface based
largely on the 35-ton’s and other artdaq experiments’ experience, allowing for
configurable clients for DAQ process input and output, and flexible transition
command implementation. A demonstrator of this interface is in progress now, with
initial implementation on the artdaq-demo.

JCOP Run Control

The JCOP framework is a collaboratively-build control systems framework in
common use by the LHC experiments at CERN. It provides many features, including
custom data elements to describe detector devices, hierarchical organization of
devices, and control of that hierarchy via a finite state machine toolkit, process
management tools, device and system configuration, automated control, alarms,
GUIs for displaying status and issuing user-driven commands, and more. Because it
is shared across the LHC experiments at CERN, many common device
configurations and interfaces to the underlying WinCC-OA supervisory control
system already exist and are available to be used by any experiment, simplifying the
development time. Once a detector device type is defined, it is easy to build
hierarchies of these devices to describe a full system.

JCOP has a number of options for communication with external processes, like the
artdaq BoardReaders, EventBuilders, and Aggregators. We plan to use the DIM
(Distributed Information Management) system as a communication mechanism to

	 -‐	 3	 -‐	

JCOP. DIM is a simple server/client-based network communication system, that
allows for the creation of servers that publish data and clients that read data and can
issue commands to the servers. A separate name server is maintained for
registering of services and provides the information to clients on how to subscribe to
data streams. C++, Java, and Python APIs exist for DIM server and client actions.
And, most important, a JCOP framework module, fwDIM, exists, allowing for easy
integration into JCOP.

For the integration between artdaq and JCOP, see Figure 1 below for a sketch of the
proposed architecture. We plan to implement a DIM service for the overall DAQ
interface layer and for each artdaq process. The DIM service would allow for
publishing of data out (status information), and the receipt of commands (like status
requests and state transitions). Using the existing JCOP framework, corresponding
DIM clients would be established as part of the JCOP run control. The run control
would then receive and update status displays, and upon user action, would issue a
command via the DIM client to the DAQ interface’s DIM service. That command
would be interpreted by the DAQ interface to make the corresponding PMT and/or
XML-RPC commands to the artdaq processes.

Figure 1: Sketch of the architecture of the run control system, with arrows representing state transition
commands and status message reporting. A DIM service will run as part of the DAQ interface for the connection
to JCOP, while the DAQ interface will send XML-RPC commands to the artdaq processes.

Thus, we envision several DIM-type devices to be defined in JCOP: generic
BoardReader, generic EventBuilder, generic Aggregator, and one for the DAQ
interface program. The collection of these processes can be combined together in a
“DAQ process” hierarchy.

Operational Monitoring

Requirements

	 -‐	 4	 -‐	

During the course of operations and data acquisition, we must monitor the status of
both hardware and software processes, store status information over time, and
provide capabilities to alarm on bad or unexpected status of both individual and
groupings of components. The metrics used for this monitoring will need to be
developed over time, and may change quickly during commissioning and early
operations periods, and so a system that can flexibly accommodate such changes
must be available. We also desire an integrated system with other slow
controls/monitoring elements, to have a centralized collection of detector state data
and monitoring. JCOP is perfectly capable of meeting these requirements, and has
been chosen to serve as the basic detector status monitoring utility for protoDUNE
SP.

Additionally, log files from each of the DAQ processes need to be collected and have
some available display that can target specific components. The Elastic Stack of
products, including log-stashing, searching, and visualization utilities for log
messages has been previously integrated into JCOP control systems, and has been
chosen as the log-monitoring suite of choice for protoDUNE SP.

DAQ Metric Monitoring tools

A “Metric Manager” exists in artdaq to allow for the communication of user-defined
monitoring metrics, inside the DAQ code, to external monitoring programs. This is
accomplished via the definition and configuration of “metric plugin” modules. These
modules are registered with the Metric Manager on initialization of the artdaq
processes (and are part of the basic configuration). Metric types and their values are
reported to the Metric Manager during the course of the data acquisition with a single
line of code, can be analyzed to determine statistical values over some periods of
time, and are then distributed to the configured monitoring modules. Many metric
plugins already exist, including reporting of metrics to a simple text file, to graphite
and ganglia time-series databases, and to an EPICs control system.

To interface to the JCOP system, we plan to develop a DIM metric plugin using the
existing DIM C++ API. Metrics would then be reported by DIM servers running as
part of the artdaq processes and, using the previously mentioned JCOP framework
DIM module, could be incorporated into the JCOP control system. In contrast to the
control system architecture described in the previous section and illustrated in Figure
1, there would be no need for the intermediate DAQ interface: artdaq processes
could, via the built-in Metric Managers, report directly to JCOP.

Metrics and the associated data elements in JCOP can be organized into logical
devices: “hardware” status devices that can report hardware registers (collected
inside artdaq Fragment Generator monitoring threads), “fragment generator” devices
that can monitor internal software elements (incoming data rates, buffer sizes, data
header values, error conditions, etc.) on the artdaq software interface to DAQ
hardware, and more general BoardReader, EventBuilder, and Aggregator statuses
(data throughputs, buffer occupancies, etc.). We will develop any necessary scripts
to update data points as needed in JCOP, to allow for flexibility in the addition or
change of monitoring metrics.

	 -‐	 5	 -‐	

The JCOP “devices” described above can be combined with or declared in
relationship to other devices. For example, DAQ hardware registers read by the
artdaq processes could be associated directly with statuses of current draws for that
hardware. Also, fragment generator devices could be associated to the common
BoardReader device that is used for state control.

As multiple metric plugins can be run simultaneously, we will also have the ability to
monitor the same metrics, or a different set, outside of JCOP should that be desired.

DAQ Process State/Status Monitoring tools

As mentioned in the Run Control section, DAQ process status and current state will
be integrated into JCOP via DIM servers and clients.

DAQ Message logging and log-searching

Log files are created at the start of each artdaq process. Along with simple print
statements in the DAQ software, artdaq contains two message-logging utilities: the
debugging and time-stamping tool TRACE, and a more general Message Facility
that allows logging and filtering of messages to configurable destinations. These
messages are easily made to print log files, but messages from both utilities may
also be viewed in an artdaq Message Viewer utility, which is based on QT, and
allows for filtering of messages in the viewer based on severity.

We plan to incorporate elements of the “Elastic Stack” of products for storing,
searching, and displaying log file information. The Logstash program allows for the
storing and processing of log files, containing all kinds of structured or unstructured
data as it is produced during a process. These logs can then be input to
ElasticSearch, a search and data analytics engine, that allows for querying over
unstructured or structured data and creating relevant time-series data. The results
from ElasticSearch can then be visualized using the Kibana toolkit, which allows for
custom results dashboards with different kinds of data visualizations. These tools
have been interfaced to the JCOP framework, allowing for easier setup and
configuration.

Electronic logbook

We have not yet made a decision on the final form of our electronic logbook, but
currently proposed has been to use the Electronic Logbook for the Information
Storage of ATLAS (ELisA).

Configuration

Requirements

	 -‐	 6	 -‐	

The run configuration utilities for the protoDUNE SP DAQ need to satisfy the
following requirements:

• provide configurations for DAQ system architecture (describing the data flow),
DAQ hardware, and DAQ software;

• provide a utility for retrieving the next run number and assigning a user-
defined configuration to that run;

• provide for partitioning/partial configurations of subsets of the detector;
• provide easy-to-use interfaces for viewing, modifying, and creating new

configurations;
• encourage descriptive configurations by allowing for easy addition and

change of configuration parameters; and,
• provide interfaces to retrieve configurations from the database per run, both

online and in offline analysis.
Additionally, while the configuration management does not need to be controlled by
the JCOP system, there must be a cohesive understanding of configurations by
JCOP, especially in understanding what data elements are currently in use.

artdaq Configuration Management Toolkit

As mentioned above, the process management tool is configured with a list of
processes, nodes on which they run, and port numbers. The artdaq processes then
receive configuration information in the form of FHiCL-formatted (Fermilab
Heirarchical Configuration Language) strings. These configurations contain both
parameters for configuration of hardware devices and the software itself. The full
FHiCL parameter set used for configuration can be stored as part of the raw data
output file (with only small data overhead), and it becomes stored as part of the data
provenance system common to the art event-processing framework. Thus, DAQ
process configuration information is saved in all subsequent steps of data
processing, and, in general, is available for extraction from the data file.

A configuration management toolkit is currently in development as part of the artdaq
software suite to provide a comprehensive set of features that include the
protoDUNE SP requirements. All configuration information can be stored in a
MongoDB or file-based document system, allowing for straightforward queries of
data and uncomplicated schema evolution. Global configurations will exist as a
superset of sub-configurations, and a run number database will be maintained to
track the history of configurations for each run. Configurations can be displayed,
modified, and saved in a simple configuration viewer. Configuration information can
also be used by the JCOP system to ignore unused detector elements in a number
of ways, though the details of our plan to implement this are still under design. The
DAQ interface will make the necessary requests for information from the
configuration database, and pass configuration information along to the artdaq
processes.

Interfaces to additional elements requiring configuration that are not part of the core
DAQ processes can also be provided: they can be stored as separate configuration
types in the database, and specialized configuration commands can be called by
extra steps in the DAQ interface program if necessary.

	 -‐	 7	 -‐	

References/Resources

• artdaq
o artdaq project page: https://cdcvs.fnal.gov/redmine/projects/artdaq/wiki
o artdaq-demo project page:

https://cdcvs.fnal.gov/redmine/projects/artdaq-demo/wiki
o Biery, K. et al. artdaq: An Event-Building, Filtering, and Processing

Framework. IEEE TNS 60 3764-3711 (2013).
§ https://cdcvs.fnal.gov/redmine/attachments/download/10253/artd

aq_IEEE_TNS_Final.pdf
• JCOP

o O Holme, et al. The JCOP framework Proc. of the 10th Int. Conf. on
Accelerator and Large Experimental Physics Control Systems
(ICALEPCS 2005) Geneva, Switzerland 2005

§ https://accelconf.web.cern.ch/accelconf/ica05/proceedings/pdf/O
3_005.pdf

o JCOP Framework project page:
https://wikis.web.cern.ch/wikis/display/EN/JCOP+Framework

o WinCC OA project page:
https://wikis.web.cern.ch/wikis/display/EN/WinCC-OA+Service

• DIM
o https://dim.web.cern.ch/dim/
o PVSS (WinCC OA)-DIM manual: http://lhcb-online.web.cern.ch/lhcb-

online/ecs/fw/fw_dim_description.html
• Elastic Stack

o https://www.elastic.co/products
• ELisA (Electronic Logbook)

o Radu, A. C. et al. The Electronic Logbook for the Information Storage
of ATLAS Experiment at LHC (ELisA). Journal of Physics: Conference
Series. 396 012014 (2012).

§ http://iopscience.iop.org/article/10.1088/1742-
6596/396/1/012014/meta

