Status Report on the Light Maps Production

Anne CHAPPUIS – Isabelle DE BONIS – Dominique DUCHESNEAU – Laura ZAMBELLI

WA105 SB Meeting 06 July 2016

Introduction

- Today : progress on the map production
 - \rightarrow Extraction of the time distributions **characteristics**

• Working chain :

Photon Tracking and Time Distribution Generation

- Use of a simplified voxel map description : $(1 \times 1 \times 1)^3$ voxels $\rightarrow (6 \times 6 \times 6) = 216$ voxels
- We look at three columns (18 voxels) :
 - X and Y fixed at -2.5m, -1.5m and -0,5m.
 - Z = {-2.5; -1.5; -0.5; 0.5; 1.5; 2.5} m

Equivalent to these voxels (given the X-Y geometry of the detector)

For the time being :

- **TPB coat** on the top of PMTs.
- Isotropic angular distribution for **both** primary photons and shifted photons.
- Infinite absorption length.

Extraction of time distribution characteristics

We want to reconstruct time distributions with various shapes

 \rightarrow Example for 10⁸ photons generated above PMT 8 (-1.5,-1.5,1.5) m

 \rightarrow Depending on the voxel Z-position and the distance to the given PMT.

Number of photons $\longrightarrow w_0 = \frac{\text{Number of photons detected by the PMT}}{\text{Number of generated photons}}$

Time distribution **shape** — Parametrization

Number of photons reaching the PMTs

Number of photons reaching the PMTs

Number of photons detected by each PMT for a production point at (X,Y) = (-1.5, -1.5)

 \rightarrow Fewer and fewer photons reach the PMTs

Time distribution shape

For the time distribution shape : We need to fit a function on the LightSim results.

 \rightarrow 3 x 6 x 36 = 648 distributions !

Last SB meeting (22 June 2016):

2 gaussians functions + 1 exponential function.

 \rightarrow Satisfactory, but work on a limited number of distributions !

 \rightarrow We need a more systematic approach.

Landau Distribution

- Satisfactory fit !
- 2 additional parameters :

 $\begin{cases} MPV (most possible value) \\ \sigma \end{cases}$

No need of the normalization coefficient : we want the shape only !

Comparison between the distribution obtain with LightSim and the "reconstructed" one based on the corresponding Landau fit.

Production point : (-1.5,-1.5,1.5)m

Reconstruction done using **3** parameters only : MPV, σ (distribution shape) and w₀ (number of photons)

Time distribution shape

10/15

Distributions of "good" fits for a production point : (X,Y) = (-1.5,-1.5)m(fit with landau distribution)

 \rightarrow The fit is **satisfactory** in most cases !

LightSim results

Production point : (-0.5,-0.5,-2.5)m

 χ^{2} /NDF=24,72

Reconstructed with Landau fit

"Bad" fits for 91 distributions \rightarrow 15,5% of the 648 distributions.

All of them for :

- 7 < 0m
- PMT below the considered voxel

Now we look at time distributions for PMT close to the voxel

Fit and reconstruction with **one exponential distribution**.

 \rightarrow 3 parameters : W_0 , t_{start} and τ

→ Not always **satisfactory**.

Fit and reconstruction with two exponential distribution.

→ 5 parameters : w_0 , t_{start} , τ_1 , τ_2 , and relative normalization (between the two exponential).

→ Broadly satisfactory !

Conclusion and Perspectives

- Work on the time distribution characteristics extraction :
 - Landau distribution in the general case
 - One or two exponential distributions for closest PMTs

- **Remaining** tasks for the light map production :
 - Implementation of a more appropriate voxel structure.
 - Implementation of the time distribution parametrisation presented in this presentation.
 - Modification of the implemented geometry to match the latest detector design (TPB and PMMA layers on the cathode, add CRP plane, etc)

