

Validation checks for CR track reconstruction in 3x1x1

V. Galymov SB Meeting 06.07.2016

Introduction

- Initial studies on gain calibration with CR flux in 3x1x1 has been shown in the past SB
- Now look in detail at the reconstruction performance
- Use sample of muons with well defined input direction / momenta to look for systematic effects in track reconstruction
- Will also show some results produced with a basic online analysis program for looking at dQ/dx

Muon samples

Events: 1000 Momenum: 4, 40 GeV/c Polar angle: 45 deg Azimuthal angle: 72 deg Gain per view: 10

Muon samples: across diagonal

Events: 1000 Momenum: 4, 40 GeV/c Polar angle: 72 deg Azimuthal angle: 72 deg Gain per view: 10

Azimuthal angle (angle in CRP plane)

The azimuthal angle is reconstructed from the fitted tangent in each view $(S_x \& S_y)$ at the <u>beginning</u> of each track

The tangents are calculated from the first ~20 points of the track ~10-20cm depending on the direction / views The tangents are calculated from the first ~20 points of the track ~10-20cm depending on the direction / views Not negligible compared to X_0 (~14cm) Since MS goes as 1/p expect sigma ~10 smaller

for 40GeV samples compared to 4GeV

Polar angle (angle wrt z[drift] axis)

The polar angle is reconstructed from the fitted direction in each view $(S_x \& S_y)$ at the beginning of each track and the corresponding reconstructed azimuthal angle

3D path lengths

Polar angle: 45 deg Azimuthal angle: 72 deg Geo path length = 1414.2 mm

Polar angle: 72 deg Azimuthal angle: 72 deg Geo path length = 3316.6 mm (= $\sqrt{3^2 + 1 + 1}$ m)

Total charge budget

Where do we loose charge?

Sum of charge from all reconstructed hits gives a correct answer, i.e., 20 (= true effective gain)

The total charge seen from the hits matches the true deposited energy

Where do we loose charge?

Where do we loose charge

The track reconstruction is not picking up hits from isolated charge depositions or disconnected small or few hit clusters (brem photons) This is about 1-2% of total charge which is missing from track on average

Downward muon samples

Events: 1000 per each sub-sample Momenum: 4 GeV/c Polar angle: 135 deg Azimuthal angle: 72 deg Gain per view: 10 Purity: inf, 1ms (to better see the effect over 1m drift), 3ms

CR dEdx basic analysis example

[svn] / WA105Soft / anautils

Index of /WA105Soft/anautils

See CRTrackAnaDEDX for basic analysis

```
std::vector<TVector3> &Get3dPath0(){ return fPath3dTrk0; }
std::vector<double> &GetQloss0(){ return fDqTrk0; }
```

```
std::vector<TVector3> &Get3dPath1(){ return fPath3dTrk1; }
std::vector<double> &GetQloss1(){ return fDqTrk1; }
```

```
double GetMeanQloss0() const { return fMean_dQdx0; }
double GetMeanQloss1() const { return fMean_dQdx1; }
double GetTotalQloss0() const { return fTotal_Q0; }
double GetTotalQloss1() const { return fTotal_Q1; }
double GetTotalPath0() const { return fPathLen0; }
double GetTotalPath1() const { return fPathLen1; }
```

```
// should be in micro seconds !!!
void SetLifetime( double val )
{
    fLifetime = val;
    fEleAtten = fVdrift * fLifetime;
}
```

Set measured electron lifetime (for MC could also get pick up true value from the run header)

Provide two 2D tracks matched b/w two views

CR dEdx basic analysis example

[svn] / WA105Soft / anautils

Index of /WA105Soft/anautils

See CRTrackAnaDEDX for basic analysis

```
std::vector<TVector3> &Get3dPath0(){ return fPath3dTrk0; }
std::vector<double> &GetQloss0(){ return fDqTrk0; }
```

```
std::vector<TVector3> &Get3dPath1(){ return fPath3dTrk1; }
std::vector<double> &GetQloss1(){ return fDqTrk1; }
```

```
double GetMeanQloss0() const { return fMean_dQdx0; }
double GetMeanQloss1() const { return fMean_dQdx1; }
double GetTotalQloss0() const { return fTotal_Q0; }
double GetTotalQloss1() const { return fTotal_Q1; }
double GetTotalPath0() const { return fPathLen0; }
double GetTotalPath1() const { return fPathLen1; }
```

```
// should be in micro seconds !!!
void SetLifetime( double val )
{
   fLifetime = val;
   fEleAtten = fVdrift * fLifetime;
}
```

After processing the event can get several relevant quantities

- dQ/dx_{0,1} and associated 3D path points after purity correction
 - Could book accumulators in a given CRP area or even at the level of each ch (i.e., 3x3mm² area) for gain measurements
- 2. Total charge reconstructed in each view after purity correction
- 3. Total reconstructed 3D path length
- <dQ/dx> = Total reco Q / Total reco path length

It should be possible using these quantities to build a variety of distribution / plots for online monitoring of CRP gain

Example distributions

Prepared a small sample of 1000 CR in 3x1x1 detector: no pre-selection on direction or path, i.e., trigger counter planes The distributions are built from ~500 CR selected for analysis in this study

To look at relative gain differences between different CRP segments should try to use truncated mean, since this distribution is much narrower ($\sigma \sim 3\%$ in this example) giving a better sensitivity to possible gain variations from region to region

Example distributions

Look for gain variation using reco CR tracks

Can reproduce simulated gain change to within a fraction of a percent with ~500 CR tracks

Truncated mean dQ/dx from track points seen by each LEM normalized to Tr<dQ/dx> from all track points \leftarrow average over all LEMs (but could also take one of the LEMs as a reference and normalized others wrt it)

The changes seen here from LEM to LEM <2% are due to fluctuations (should be reduced with larger statistics \rightarrow to check) as all LEMs have equal gain in MC To give an idea: from ~500 CR one has ~4000 dQ/dx (but 30% of them are then truncated) samples per 50x50cm²

Charge sharing between collection views

The End

- Showed example distributions produced from a basic dQ/dx analysis that could be integrated into online monitoring
 - Of course each quantity of interest should be monitored as function of time as well
- Code is committed
- Format of the raw data files produced by DAQ has been defined
- Need to add the decoder functions to the event manager for reconstruction / event viewing
 - For uncompressed data stream
 - Compressed data stream
- Once finished will run benchmarking to ensure get identical results