
Dissipative
Transport

Jeffrey
Schenker

Dissipative Transport in the Localized Regime

Jeffrey Schenker

Supported by NSF grant DMS-1500386

NMP17
10 March 2017



Dissipative
Transport

Jeffrey
Schenker

Localization

Waves in a disordered environment may be trapped by disorder.

Hω =
∑
x∼y
|x〉 〈y |+ λ

∑
x

ω(x) |x〉 〈x |

on Zd with ω(x) uniform in [−1, 1].

Then
E
(∣∣∣〈x | e−itHω |y〉

∣∣∣) ≤ e−µ(λ,d)|x−y |

for all t > 0,provided

• d = 1 (or 2?) or

• λ >> 1

Anderson 1958 + thousands of later papers
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What if the potential fluctuates?

Question

What are the long time dynamics for solutions to

∂tU(t, t0) = −iH(t)U(t, t0),

with U(t0, t0) = I and H(t) = Hω + u
∑

x w(x , t) |x〉 〈x |?
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Fluctuating potential

Fairly generally, the answer is “diffusive”, i.e.,

E
(
|〈x |U(t, t0) |y〉|2

)
≈ C

|t − t0|
d
2

e
− |x−y|2

2D|t−t0| ,

provided w fluctuates stochastically.
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A general Theorem

Theorem (S. 2015)

Let w(x , t) = v(θx(t)) where θx(t) are independent Brownian
motions on the circle and v is a non-constant function. If
u > 0 then solutions to

i∂t |ψt〉 = H(t) |ψt〉

satisfy

lim
t→∞

∑
x

f

(
x√
Dt

)
E
(
|〈x |ψt〉|2

)
= Cd

∫
f (r)e−

d
2
r2
dd r,

with a positive diffusion constant D = D(λ, u).
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Comments

This result is:

1 Non-perturbative result (no small parameter).
2 Purely qualitative.

Estimating, or computing D, takes more work.

3 Dimension independent.
4 Rigorous.

Fundamental assumption is that w(x , t) is a functional of
a Markov process with exponential return to equilibrium.
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Quantitative analysis: fast diffusion

Theorem(Kang and S. 2009)

For
H(t) =

∑
x∼y
|x〉 〈y |+ u

∑
x

w(x , t) |x〉 〈x |

we have

D =
1

u2
D0 + O(1/u).
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Fast diffusion



Dissipative
Transport

Jeffrey
Schenker

Quantitative analysis: slow diffusion

Theorem (Schenker 2015)

If H(t) = Hω + u
∑

x w(x , t) |x〉 〈x | , where Hω exhibits
localization, then we have

D = Fu2 + o(u2),

where 0 < F <∞.
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Slow Diffusion
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Slow Diffusion
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Comments on the proof

“Augmented space formalism” with disorder variables in
the Hilbert space:

E
(
|〈x |ψt〉|2

)
= 〈δx × δx × 1| e−tG

∣∣ψ0 × ψ0 × 1
〉
H×H×L2(Ω)

G = i [H, ·] + B,
B = Markov process generator.

Generator G commutes with translations
δx × δy × f (ω) 7→ δx+ξ × δy+ξ × f (Sξω).

After a Bloch-Floquet transform the analysis rests on
controlling matrix elements of (η + G)−1 in the zero
“momentum” fiber.
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Open Quantum System

What about diffusion for a quantum particle interacting with a
thermal bath?

Vast literature going back to Mott.

Most work relies on quantum Markov formalism (“Fermi
Golden Rule”).

Some recent mathematical physics literature:

D. Spehner and J. Bellissard (JSP 2001);
G. Androulakis, J. Bellissard, and C. Sadel. (JSP 2012)
W. De Roeck and J. Fröhlich (CMP 2011);
Fröhich and S. (JMP 2016);
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Open Quantum System in the Markov
Approximation

Theorem (Fröhlich S. 2016)

∂tρt = −i [Hω, ρt ] + uL(ρt),

with a suitable Lindbladian L. Then

D = lim
t→∞

1

t

∑
x

|x |2E (〈x | ρt |x〉)

exists and satisfies 0 < D <∞.

1 If λ = 0 (no disorder), then D = C
u for all u > 0.

2 If Hω exhibits localization, then

D = ∆u + o(u)

where 0 < ∆ < (loc. length)2.
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The Lindblad generator

Describes a hopping process for the particle momentum:

ρW (X ,p) =
∑
ξ

eip·ξ
〈
X + ξ

2

∣∣∣∣ ρ ∣∣∣∣X − ξ2

〉
,

LρW (X ,p) =

∫
r̂(p,q)

[
ρW (X ,q)− ρW (X ,p)

]
dq,

r̂(p,q) = r̂(q,p),

and∫∫
r̂(p,q) |f (p)− f (q)|2 dpdq ≥ c

∫∫
|f (p)− f (q)|2 dpdq.
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Conclusions

Diffusion is universal in the presence of time dependent
fluctuations.

Diffusion is quantifiably slow for weak fluctuations around
a localized system.
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Open problems

1 Diffusion in an open quantum system without the Markov
approximation.

How to prove that decoherence emerges and memory in
the bath decays?

2 Diffusion for weak disorder (without fluctuations)

Recurrence is the problem.
Can fluctuations help?
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Thank you!


