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Metastability versus Ergodicity – beyond the “Landau criterion”

Oscillations – beyond the “pendulum physics” of the Joesephosn SQUID Hamiltonian

Thermalization – percolation in phase-space; semiclassical vs dynamical localization

Quantum Chaos!



Motivating the interest in Atomtronic circuits

• Recent experiments [1,2,3] have opened a new arena: superfluidity in low dimensional circuits.

• The hallmark of superfluidity is a metastable persistent current: flow-state.

• A stability regime diagram of the flow states in the toroidal ring has been explained by following

the reasoning of the Landau superfluidity criterion.

• We claim that a theory for the stability of the flow states in a discrete ring that are described by

the Bose-Hubbard Hamiltonian requires a quantum chaos perspective.

• We demonstrate how the stability is affected by non-linear resonances, in regimes where the

dynamics is traditionally considered to be stable.
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The traditional view of Superfluidity

• Superfluidity means that there is a

feasibility to observe a metastable

persistent current.

• This definition has nothing to do with

the thermodynamic limit!

It is not a phase transition.

• This leads to the Landau criterion.

More generally one can carry out

Bogoliubov stability analysis [1-4].

unstable flow state

stable flow state fragmented states

u ~ 0

u > 0

αE excitations
one−particle

u < 0
bright soliton band

I/N

• See also: persistent currents for interacting Bosons on a ring with a gauge field [5]

• The quantum chaos perspective of “superfluidity” has not been considered so far

• Related theme: non-linear resonances in Bose-Hubbard model [6]
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The Bose Hubbard Hamiltonian

The system consists of N bosons in M sites. Later we add a gauge-field Φ.

HBHH =
U

2

M∑
j=1

a†ja
†
jajaj −

K

2

M∑
j=1

(
a†j+1aj + a†jaj+1

)

u ≡
NU

K
[classical, stability, supefluidity, self-trapping]

γ ≡
Mu

N2
[quantum, Mott-regime]

Dimer (M=2): Minimal BHH; Bosonic Josephson junction; Pendulum physics [1,5].

Driven dimer: Landau-Zener dynamics [2], Kapitza effect [3], Zeno effect [4], Standard-map physics [5].

Trimer (M=3): Minimal model for low-dimensional chaos; Coupled pendula physics.

Triangular trimer (M=3): Minimal model with topology, Superfluidity [6], Stirring [7].

Larger rings (M>3) High-dimensional chaos; web of non-linear resonances [7].

Coupled subsystems (M>3): Minimal model for Thermalization [8,9].
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The “Quantum Chaos” perspective

Stability of flow-states (I):

• Landau stability of flow-states (“Landau criterion”)

• Bogoliubov perspective of dynamical stability

• KAM perspective of dynamical stability

Stability of flow-states (II):

• Considering high dimensional chaos (M > 3).

• Web of non-linear resonances.

• Irrelevance of the the familiar Beliaev and Landau damping terms.

• Analysis of the quench scenario.

Coherent Rabi oscillations:

• The hallmark of coherence is Rabi oscillation between flow-states.

• Ohmic-bath perspective ; η = (π/γ) > 1

• Feasibility of Rabi oscillation for M < 6 devices.

• Feasibility of of chaos-assisted Rabi oscillation.

Thermalization:

• Spreading in phase space is similar to Percolation.

• Resistor-Network calculation of the diffusion coefficient.

• Observing regions with Semiclassical Localization.

• Observing regions with Dynamical Localization.



The Model (non-rotating ring)

A Bose-Hubbard system with M sites and N bosons:

H =

M∑
j=1

[
U

2
a†ja
†
jajaj −

K

2

(
a†j+1aj + a†jaj+1

)]

In a semi-classical framework:

aj =
√
nj eiϕj , [ϕj ,ni] = iδij

z = (ϕ1, · · · ,ϕM , n1, · · · ,nM )

This is like M coupled oscillators with H = H(z)

H(z) =

M∑
j=1

[
U

2
n2
j −K

√
nj+1nj cos (ϕj+1−ϕj)

]

The dynamics is generated by the Hamilton equation:

ż = J∂H , J =

 0 I

−I 0


(DNLS)

Classically there is a single

dimensionless parameter:

u =
NU

K

Rescaling coordinates:

ñ = n/N

[ϕj , ñi] = i
1

N
δij

γ ≡
m∗g

ρ
=

Mu

N2



The model (rotating ring)

In the rotating reference frame we have a Coriolis force,

which is like magntic field B = 2mΩ. Hence is is like having flux

Φ = 2πR2m Ω

Note: there are optional experimental realizations.

H =
M∑
j=1

[
U

2
a†ja
†
jajaj −

K

2

(
ei(Φ/M)a†j+1aj + e−i(Φ/M)a†jaj+1

)]

Summary of model parameters:

The ”classical” dimensionless parameters of the DNLS are u and Φ.

The mumber of particles N is the ”quantum” parameter (optionally γ).

The system has effectively d = M−1 degrees of freedom.

M = 2 Bosonic Josephson junction (Integrable)

M = 3 Minimal circuit (mixed chaotic phase-space)

M > 3 High dimensional chaos (Arnold diffusion)

M →∞ Continuous ring (Integrable)



Flow-state stability regime diagram

The I of the maximum current state is imaged as a function of (Φ, u)

• solid lines = energetic stability borders (Landau)

• dashed lines = dynamical stability borders (Bogoliubov)

M = 3

Φ/π

u
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The traditional paradigm associates flow-states with stationary fixed-points in phase space.

Consequently the Landau criterion, and more generally the Bogoliubov linear-stability-analysis, are

used to determine the viability of superfluidity.



Non-linear resonances

Regime diagram for flow-state metastability:

• Via quantum eigenstates

• Via quantum quench simulation

• Via semiclassical simulation

Observation:

The linear-stability analysis of Bogoliubov is not

a sufficient condition for strict dynamical stability.

A non-linear resonance between the frequencies can

destroy the dynamical stability.

The “1:2” resonance

for the m = 1 flow-state of M=4 ring:

u = 4 cot

(
Φ

4

)[
3 cos

(
Φ

4

)
−

√
6 + 2 cos

(
Φ

2

)]

Addressing all flow-states in one diagram:

φ = Φ− 2πm = unfolded phase ∈ [−Mπ,Mπ]

Quantum regimes M = 4

N = 32 particles

Φ/π
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The non-linear terms

H =
∑
k

εkb
†
kbk +

U

2M

∑
〈k1..k4〉

b†k4b
†
k3

bk2bk1

Assuming condensation at the k=0 orbital

the Hamiltonian can be expressed in terms

of Bogoliubov quasi-particles creation operators:

b†q = uqc
†
q + vqc−q

q =
2π

M
m

m = integer 6= 0

M

2
< m ≤

M

2

Approximated Hamiltonian at the vicinity of the condensate:

H =
∑
q

ωqc
†
qcq +

√
NU

M

∑
〈q1,q2〉

[
Aq1,q2 (c−q1−q2cq2cq1 + h.c.) +Bq1,q2

(
c†q1+q2

cq2cq1 + h.c.
)]

• The ”B” terms are the Beliaev and Landau damping terms. [gray lines]

• The ”A” terms are usually ignored. [red lines]



Mapping the non-linear resonances

ωq1 + ωq2 − ωq1+q2 = 0 [gray lines]

ωq1 + ωq2 + ω−q1−q2 = 0 [red lines]
Φ/π
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Considering the “1:2” resonance for the m = 1 flow-state of the M = 4 ring,

setting q1 = q2 = q = 2π/4, we get from 2ωq + ω−2q = 0 the resonance condition

u = 4 cot

(
Φ

4

)[
3 cos

(
Φ

4

)
−

√
6 + 2 cos

(
Φ

2

)]



Survival of the flow-state



The decay of the flow-state

Observations:

• One can resolve dips in the dependence of the stability

on Φ, provided if u is small.

• Even in the center of a dip the stability is better compared

with the linear unstable regime.

• These dips broaden and merge as u becomes larger.

• Off-resonance there is strong sensitivity to N .

N = 120, 500, 1000, 2000, 4000



The N dependence

The flow state is represented in phase-space by a Gaussian-like cloud of uncertainty width 1/N .

The size of the stability-island depends on the detuning: ν ≡ 2ωq + ω−2q

The radial coordinate represents the quasiparticle occupation ñq .



The secular approximation

Considering the “1:2” resonance, we keep the two modes that are coupled by the resonance.

We get the “Cherry Hamiltonian” of celestial mechanics

Hq = ωJ + νI + µI
√

(J/2) + I cos(ϕ)

ν ≡ 2ωq + ω−2q = detuning

I = ñq/(2N), conjugate ϕ

J = (2ñ−2q − ñq)/N = const of motion

Width of the resonance region:

∣∣∣∣ν∣∣∣∣ < A

(
1

N

)1/2 u

M
K

Note: in contrast, the Beliaev and Landau terms do not generate an escape route.



Hyperbolic escape

Exponential escape followed by hyperbolic escape

ñq ∝
1

(te − t)2
for t < te

After that transition to chaos.

Complete decay as in the linear unstable regime.

Here the detuning is zero and u is large.

For small u the decay process is suppressed.

Re-injection scenario.

Dynamical localization.
n0 (red) occupation of the flow-state orbital

nk occupation of the other momentum orbital

ñq quasi-particle occupations



Hyperbolic escape - the possible scenarios



The many-body spectrum for M = 3 ring

We characterize each eigenstate |α〉 of the BHH by (Iα, Eα) and colorcode by Mα

The expected location of a flow-state, and the maximum current state, are encircled by © and ©
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|m〉 =
(
ã†m

)N
|0〉 m = 1...M

Im = N ×
(
K

M

)
sin

(
1

M
(2πm− Φ)

)

Iα ≡ −
〈
∂H
∂Φ

〉
α

Constructing the regime diagram:

For every (Φ, u) value we plot max{Iα}

Φ/π

u

 

 

unstable
stable

0.2 0.4 0.6 0.8

−1

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1



Energetic vs Dynamical stability

Poincare section n2 = n3 at the flow-state energy.

(1) Energetic stability; (2) Dynamical stability.

red trajectories = large positive current

blue trajectories = large negative current

The flow-state fixed-points are located along the symmetry axis:

n1 = n2 = · · · = N/M, ϕi − ϕi−1 =

(
2π

M

)
m

Φ/π

u
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KAM stability - elliptic islands and chaotic ponds
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Swap transition

In (4) and (5) dynamical stability is lost ; chaotic motion.

But the chaotic trajectory is confined within a chaotic pond;

uni-directional chaotic motion; superfluidity persists!

At the separatrix swap-transition superfluidity diminishes.

Swap transition (dotted line):

u = 18 sin

(
π

6
−

Φ

3

)
Φ/π

u
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Manifestation of phase space topology for M > 3 circuits

Number of freedoms: d = (M−1)

d = 2 Mixed phase space: islands, ponds, and chaotic sea

d > 2 High dimensional chaos: Arnold web and chaotic sea

• The energy surface is 2d− 1 dimensional

• KAM tori are d dimensional

• The KAM tori are not effective in blocking the transport on the energy shell if d > 2.

• Resonances form an “Arnold Web” ; “Arnold diffusion”

• As u becomes larger this non-linear leakage effect is enhanced, stability of the motion is

deteriorated, and the current is diminished.

For M = 3 the 3 dimensional energy surface is divided into territories by the 2 dimensional KAM tori.

For M = 4 the 5 dimensional energy surface cannot be divided into territories by the 3 dimensional KAM tori.

Work in progress



Metastability - the big picture

• (traditional) Energetic metastability, aka Landau criterion.

• (traditional) Dynamical metastability via linear stability analysis, aka BdG.

• Strict dynamical metastability (KAM, applies if d = 2)

• Quasi dynamical metastability (might be the case for d > 2)

In the absence of constants of motion, a generic system with d > 2 degrees-of-freedom

is always ergodic. But the equilibration might be an extremely slow process.

Quasi stability might become Quantum stability due to dynamical localization.

The breaktime is determined from the breakdown of the QCC requirement:

t � tH [Ω(t)] ; t∗

Chirikov, Izrailev, Shepelyansky [SovSciRevC 1981]; Shepelyansky [PhysicaD 1987];

Heller, Quantum localization and the rate of exploration of phase space [PRA 1987];

Dittrich, Spectral statistics for 1D disordered systems [Phys Rep 1996];

Cohen, Periodic Orbits Breaktime and Localization [JPA 1998];

Cohen, Yukalov, Ziegler, Hilbert-space localization in closed quantum systems [PRA 2016].

Implication: violation of the Eigenstate Thermalization Hypothesis.



Coherent Rabi oscillations between flow-states
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The introduction of a weak link

The “system plus bath” perspective is expected to be valid if M � 1.

HJCH = EC n2 +
1

2
ELϕ

2 − EJ cos(ϕ− Φ) +Hbath

with EC = U , and EL = [(N/M)/(M − 1)]K, and EJ = (N/M)K′.

The bath Hamiltonian has the standard Caldeira-Leggett form

Hbath =
∑
m

(
1

2mm
ñ2
m +

1

2
mmω

2
m

(
ϕ̃m −

cm

mmω2
m

ϕ

)2
)

J(ω) ≡
π

2

∑
m

c2m
mmωm

δ(ω − ωm) = ηω (ω < ωc),

η =
π
√
γ
, γ ≡

m∗g

ρ
=

U

n̄K
=

Mu

N2

Coherent oscillations are feasible only in the Mott regime

α ≡
EJ

EL

α > 1

α < 1



The chaos threshold, rings with M ≥ 6

This picture is valid

provided M ≥ 6.

α ≡
EJ

EL
= (M−1)

K′

K
Double well for α > 1
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The phase-space for small rings M < 6
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The minimal model for thermalization [CK,AV,DC (NJP 2015)]

The FPE description makes sense if the sub-systems are chaotic.

Minimal model for a chaotic sub-system: BHH trimer.

Minimal model for thermalization: BHH trimer + monomer

N = 60 = number of particles

x = occupation of the trimer

N−x = occupation of the monomer

ρ(x) = probability distribution

∂ρ(x)

∂t
=

∂

∂x

g(x)D(x)
∂

∂x

 ρ(x)

g(x)
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The fluctuation-diffusion-dissipation relation

Rate of energy absorption (work):

A(ε) = ∂εDε + β(ε)Dε, Ẇ = 〈A〉

Dε =

∫ ∞
0

dω

2π
ω2 C̃ε(ω) S̃(ω)

System
Driving

(ω)

W

S

Derivation:

∂ρ

∂t
=

∂

∂ε

(
g(ε)D(ε)

∂

∂ε

(
1

g(ε)
ρ

))
= − ∂

∂ε

(
A(ε)ρ− ∂

∂ε
[D(ε)ρ]

)

M. Wilkinson (1988), based on the diffusion picture of Ott (1979)

C. Jarzynski (1995) - adding FPE perspective.

D. Cohen (1999) - adding FDT perspective + addressing the quantum case.

G. Bunin, L. D’Alessio, Y. Kafri, A. Polkovnikov (2011) - adding NFT based derivation.



Thermalization of two subsystems

Rate of energy transfer [FPE version]:

A(ε) = ∂εDε + (β1 − β2)Dε

Dε =

∫ ∞
0

dω

2π
ω2 S̃(1)(ω) S̃(2)(ω)

subsystem 1 subsystem 2

A

Derivation: [Tikhonenkov, Vardi, Anglin, Cohen (PRL 2013)]

The diffusion is along constant energy lines: ε1 + ε2 = E
The proper Liouville measure is: g(ε) = g1(ε)g2(E − ε)

Note: After canonincal preparation of the two subsystems:

〈A(ε)〉 =

(
1

T1

− 1

T2

)
〈Dε〉

MEQ version: Hurowitz, Cohen (EPL 2011)

NFT version: Bunin, Kafri (JPA 2013)


