

Constant temperature description of the nuclear level densities

Mihai Horoi

Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

Support from NSF grant PHY-1404442 and DOE/SciDAC grant DE-SC0008529 is acknowledged

NMP17 March 7, 2017

- The interactive shell model and effective Hamiltonians
- Spin and parity moments method and nuclear level density
- Applications to reaction rates
- Constant temperature (CT) parameterization
- Features of the CT parameters in the fp shell and beyond
- Summary and Outlook

Microscopic Models of Nuclear Structure

- Take into account the quantum motion of many nucleons
- Some nucleons will be consider active valence nucleons - , some will be consider to form an "inert" core
- Motion will be considered nonrelativistic: use nonrelativistic many-body Schroedinger equation

NMP17 March 7, 2017

 $\sum_{j} < i \mid H \mid j > C_{j}^{\alpha} = E_{\alpha}C_{i}^{\alpha}$

Lanczos algorithm: provides few lower energies, especially the M-scheme codes.

NMP17 March 7, 2017

Effective Hamiltonians for Large N $\hbar\omega$ Excitation Model Spaces

- "Bare" Nucleon-Nucleon Potentials:
- Argonne V18: PRC 56, 1720 (1997)
- CD-Bonn 2000: PRC 63, 024001 (2000)
- N³LO: PRC 68, 041001 (2003)
- INOY: PRC 69, 054001 (2004)

$$H = T + \sum_{i < j} V_{ij} + \sum_{i < j < k} \Psi_{\mathcal{A}}$$
$$\Psi_{\mathcal{A}} \longrightarrow \Psi_{P} = P \Psi_{\mathcal{A}}$$

 $O \rightarrow U O U^+$

$$\mathcal{H} = \mathbf{U} \, \mathbf{H} \mathbf{U}^{+} = \mathcal{H}_{2} + \mathcal{H}_{3} + \mathcal{H}_{4} + \dots$$

M. Horoi CMU

 $PP \quad PQ = 0$ $QP = 0 \quad QQ$

Effective Hamiltonians for Large N $\hbar\omega$ Excitation Model Spaces

Renormalization methods:

- G-matrix: Physics Reports 261, 125 (1995)
- Lee-Suzuki (NCSM): PRC 61, 044001 (2000)
- V_{low k} : PRC 65, 051301(R) (2002)
- Unitary Correlation Operator: PRC 72, 034002 (2004)
- Similarity Renormalization Group (SRG): PRL 103, 082501 (2009)
 - "Bare" Nucleon-Nucleon Potentials:
 - Argonne V18: PRC 56, 1720 (1997)
 - CD-Bonn 2000: PRC 63, 024001 (2000)
 - N³LO: PRC 68, 041001 (2003)
 - INOY: PRC 69, 054001 (2004)

M. Horoi CMU

$$H = T + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \cdots$$
$$\Psi_{\mathcal{P}} = \Psi_{\mathcal{P}} = \Psi_{\mathcal{P}}$$

$$\mathcal{H} = U H U^+ = \mathcal{H}_2 + \mathcal{H}_3 + \mathcal{H}_4 + \dots$$

 $O \rightarrow U O U^+$

74

CENTRAL MICHIGAN Shell Model Effective Hamiltonians

74

Shell Model: Gold Standard of Nuclear Structure

- ✓ Shell model techniques describe and predict a large amount of data in light, medium, and heavy nuclei:
 - ✓ Energies and quantum numbers
 - ✓ Electromagnetic transition probabilities
 - ✓ Spectroscopic amplitudes
 - ✓ Nuclear level densities
 - ✓ Beta decay probabilities and charge exchange strength functions
 - $\checkmark 2\nu/0\nu$ Double-beta decay matrix elements

Nuclear Level Densities (NLD)

NMP17 March 7, 2017

Accurate Nuclear Level Densities

Comparison of:

1. CI

2. HF+BCS

www-astro.ulb.ac.be/Html/nld.html

3. experimental data

Complete spectroscopy: sdshell nuclei

Conclusions:

- HF+BCS seems to overestimate the data
- CI seem to accurately describe the data

NMP17 March 7, 2017

NLD and Statistical Spectroscopy

CENTRAL MICHIGAN Shell model moments method: pro and con

✓ Pro

UNIVERSITY

- \checkmark Spin and parity dependent centroids take into account the s.p. energy shifting due the monopoles (tensor interaction)
- ✓ Spin and parity dependent widths take into account more realistic spreading, beyond that of pairing
- ✓ No need to consider rotational/vibrational amplifications
- ✓ Con
 - \checkmark Relatively small number of s.p. orbitals in the valence space: natural parity favored (unique)
 - ✓ Reliable Hamiltonians hard to obtain
 - \checkmark Energy of the g.s. could be a problem (but there are some solutions)
 - \checkmark The configuration distribution could be asymmetric (some solutions here as well)

NMP17 March 7, 2017

NLD and Hauser-Feshbach Cross-Sections

From A. Voinov et al., PRC 76, 044602 (2007)

Comparison with Moments Densities

talys : www.talys.eu

NLD-M1

ldmodel 1: Constant temperature + Fermi gas model

Idmodel 2: Back-shifted Fermi gas model

Idmodel 3: Generalised superfluid model

Idmodel 4: Microscopic level densities from Goriely's table

Idmodel 5: Microscopic level densities from Hilaire's table

Interface: Moments table -> Hilaire's table

Exp – Ohio: A. Voinov et al., PRC 76, 044602 (2007)

NMP17 March 7, 2017

Comparison with RIPL-2 pwaves neutron resonances data

NLD: reaction rates

talys 1.2 : www.talys.eu

Rauscher & Thielemann ADNDT 75, 1 (2000)

$$N_{A}(\sigma v)_{\alpha\alpha'}^{*}(T) = \left(\frac{8}{\pi m}\right)^{1/2} \frac{N_{A}}{(kT)^{3/2} G(T)} \int_{0}^{\infty} \sum_{\mu} \frac{(2I^{\mu} + 1)}{(2I^{0} + 1)} \times \sigma_{\alpha\alpha'}^{\mu}(E) E \exp\left(-\frac{E + E_{\pi}^{\mu}}{kT}\right) dE,$$

$$G(T) = \sum_{\mu} (2I^{\nu} + 1)/(2I^{0} + 1)e^{-E_{\mu}^{\mu}/kT} \rightarrow \sum_{I,\pi} \int (2I^{\pi} + 1)/(2I^{0} + 1)e^{-E_{\mu}/kT} dE_{\pi}$$

$$G(T) = \sum_{\mu} (2I^{\nu} + 1)/(2I^{0} + 1)e^{-E_{\mu}/kT} dE_{\pi}$$

$$G(T) = \sum_{\mu} (2I^{\nu} + 1)/(2I^{0} + 1)e^{-E_{\mu}/kT} dE_{\pi}$$

$$G(T) = \sum_{\mu} (2I^{\nu} + 1)/(2I^{0} + 1)e^{-E_{\mu}/kT} dE_{\pi}$$

$$G(T) = \sum_{\mu} (2I^{\nu} + 1)/(2I^{0} + 1)e^{-E_{\mu}/kT} dE_{\pi}$$

$$G(T) = \sum_{\mu} (2I^{\nu} + 1)/(2I^{0} + 1)e^{-E_{\mu}/kT} dE_{\pi}$$

$$G(T) = \sum_{\mu} (2I^{\nu} + 1)/(2I^{0} + 1)e^{-E_{\mu}/kT} dE_{\pi}$$

$$G(T) = \sum_{\mu} (2I^{\nu} + 1)/(2I^{0} + 1)e^{-E_{\mu}/kT} dE_{\pi}$$

Why constant temperature?

PHYSICAL REVIEW C 75, 054303 (2007)

Pairing phase transitions in nuclear wave functions

Mihai Horoi¹ and Vladimir Zelevinsky² ^{28}Si ^{24}Mg $J^{\pi}T = 0^+0$ $\mathcal{H}_P = \sum_{t=0,\pm 1} P_t^{\dagger} P_t,$ (a) (b) Only pairing int $\bigwedge_{-\alpha}^{\wedge} 30$ 10 $P_t = \frac{1}{\sqrt{2}} \sum_{i} [\tilde{a}_j \tilde{a}_j]_{L=0, T=1, T_3=t},$ 200 800 100 300 200 400 600 20 120(c) (d) USD no pairing 10 5 $\mathbf{0}$ $\mathbf{\Omega}$ 300 200 200 400100600 800 30 +30·(e) (f) USD int 2010 0 NMP17 300 200 400 M. H@@i CMQ()() 0 March 7, 2017 α α

CENTRAL MICHIGAN Constant Temperature vs Moments NLD

CENTRAL MICHIGAN COnstant Temperature vs Moments NLD

CENTRAL MICHIGAN CONStant Temperature vs Moments NLD

CENTRAL MICHIGAN CONStant Temperature vs Moments NLD

PHYSICAL REVIEW C 75, 054303 (2007)

Pairing phase transitions in nuclear wave functions

Mihai Horoi¹ and Vladimir Zelevinsky²

$$\mathcal{H}_{P} = \sum_{t=0,\pm 1} P_{t}^{\dagger} P_{t},$$
$$P_{t} = \frac{1}{\sqrt{2}} \sum_{j} [\tilde{a}_{j} \tilde{a}_{j}]_{L=0,T=1,T_{3}=t},$$
$$P_{t}^{\dagger} = \frac{1}{\sqrt{2}} \sum_{j} [a_{j}^{\dagger} a_{j}^{\dagger}]_{L=0,T=1,T_{3}=t}.$$

NMP17 March 7, 2017

CENTRAL MICHIGAN CONStant Temperature vs Moments NLD

CENTRAL MICHIGAN CONStant Temperature vs Moments NLD

Constant Temperature NLD

von Egidy & Bucurescu

PRC 72, 044311 (2005), PRC 72, 067304, JoP Conf Ser 338, 012028 (2012)

Summary and Outlook

- ✓ Shell model techniques describe and predict a large amount of data in light, medium, and heavy nuclei:
 - ✓ Energies and quantum numbers, Electromagnetic transition probabilities, Spectroscopic amplitudes, Beta decay, charge exchange, 2v/0v double-beta decay
 - \checkmark Spin and parity dependent nuclear level densities
- \checkmark These observables are essential, but:
 - ✓ There is a clear need to obtain accurate effective Hamiltonians for enlarged, but tractable valence spaces.
 - ✓ Effective truncation scheme for configurations (partitions)
- ✓ Constant temperature description of the J-dependent shell model NLD represents a new and powerful technique:
 - \checkmark Provides inside into the physics of nuclei as mesoscopic systems
 - ✓ Can provide an efficient interface of the shell model nuclear level densities to reaction codes

Collaborators:

- Jayani Dissanayake, CMU
- Vladimir Zelevinsky, NSCL@MSU
- Roman Senkov, CMU and CUNY

