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Overview 
•  The interactive shell model and effective 

Hamiltonians 
•  Spin and parity moments method and 

nuclear level density 
•  Applications to reaction rates 
•  Constant temperature (CT) parameterization 
•  Features of the CT parameters in the fp shell 

and beyond 
•  Summary and Outlook 
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Microscopic Models of Nuclear 
Structure 

•  Take into account the quantum motion of 
many nucleons 

•  Some nucleons will be consider active - 
valence nucleons - , some will be consider 
to form an “inert” core 

•  Motion will be considered nonrelativistic: 
use nonrelativistic many-body Schroedinger 
equation 
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Nuclear Configuration Interaction 
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Limits: 1010 – 1011 m-scheme basis states, 
about 50 s.p. valence states (p+n) 
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Effective Hamiltonians for Large N !ω 
Excitation Model Spaces  

“Bare” Nucleon-Nucleon Potentials: 

- Argonne V18: PRC 56,  1720 (1997) 

- CD-Bonn 2000: PRC 63, 024001 (2000) 

- N3LO: PRC 68, 041001 (2003) 

- INOY: PRC 69, 054001 (2004) 
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Effective Hamiltonians for Large N !ω 
Excitation Model Spaces  

“Bare” Nucleon-Nucleon Potentials: 

- Argonne V18: PRC 56,  1720 (1997) 

- CD-Bonn 2000: PRC 63, 024001 (2000) 

- N3LO: PRC 68, 041001 (2003) 

- INOY: PRC 69, 054001 (2004) 
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Renormalization methods: 

-  G-matrix: Physics Reports 261, 125 (1995) 

-  Lee-Suzuki (NCSM): PRC 61, 044001 (2000) 

-  Vlow k : PRC 65, 051301(R) (2002) 

-  Unitary Correlation Operator: PRC 72, 034002 
(2004) 

-  Similarity Renormalization Group (SRG): PRL 103, 
082501 (2009) 
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Shell Model Effective Hamiltonians 

core polarization: 
Phys.Rep. 261, 125 
(1995) 
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Shell Model Effective Hamiltonians 

core polarization: 
Phys.Rep. 261, 125 
(1995) 

PRC 74, 34315 (2006), 78, 064302 (2008) 
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Hvalence = H2−body

can describe most correlations
around the Fermi surface!
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Shell Model: Gold Standard of 
Nuclear Structure 

ü  Shell model techniques describe and predict a large amount of 
data in light, medium, and heavy nuclei: 
ü Energies and quantum numbers 
ü Electromagnetic transition probabilities 
ü Spectroscopic amplitudes 
ü Nuclear level densities 
ü Beta decay probabilities and charge exchange strength 

functions 
ü 2ν/0ν Double-beta decay matrix elements 

NMP17                   
March 7, 2017    



M. Horoi CMU 

Nuclear Level Densities (NLD) 
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Where are NLD Needed: Nuclear Astrophysics 
Binary stars XRB: Sirius 

             o 

 

 

 

             o 

SN 1987 A 
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Accurate Nuclear 
Level Densities 

Comparison of: 
1. CI 
2. HF+BCS  
    www-astro.ulb.ac.be/Html/nld.html 
3. experimental data 

28Si 

26Al 

Conclusions: 

- HF+BCS seems to 
overestimate the data 

- CI seem to accurately 
describe the data  

Complete spectroscopy: sd-
shell nuclei 
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NLD and Statistical Spectroscopy 
28Si  π = +        staircase: CI, USD 
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ρ(Ex,J,π ) = Dc (J,π )GFR E,Ec (J),σ c (J)( )
c∈conf
∑
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Ec (J),σ c (J)← Tr SDc
< M |Hq |M >SDc

Ex =E − Eg.s.

M. Horoi et al. : 

PRC 67, 054309 (2003),  

PRC 69, 041307(R) (2004),  

NPA 785, 142 (2005). 

PRL 98, 265503 (2007) 

Eg.s. from CI, ECM (PRL 82, 2064 (1999)), CC, etc. 

Configurations: e.g. 4 particles in sd 
d3 d5 s1 
4   0   0 
3   1   0  
3   0   1 … 
 preserve rotational invariance 

and parity 
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Shell model moments method: pro 
and con 
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ü Pro 
ü  Spin and parity dependent centroids take into account the s.p. energy 

shifting due the monopoles (tensor interaction) 
ü  Spin and parity dependent widths take into account more realistic 

spreading, beyond that of pairing 
ü No need to consider rotational/vibrational amplifications 

ü Con 
ü  Relatively small number of s.p. orbitals in the valence space: natural parity 

favored (unique) 
ü  Reliable Hamiltonians hard to obtain 
ü  Energy of the g.s. could be a problem (but there are some solutions) 
ü  The configuration distribution could be  asymmetric (some solutions here 

as well) 



NLD and Hauser-Feshbach Cross-Sections 
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From A. Voinov et al., PRC 76, 044602 (2007) 
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Comparison with Moments Densities 
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θ =1500
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θ =1500

talys : www.talys.eu 

Exp – Ohio:  A. Voinov et al., PRC 76, 044602 (2007) 

NLD-M1 

NLD-M5 

Interface: 

Moments table -> Hilaire’s table 
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Comparison with RIPL-2 p-
waves neutron resonances data 
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49Cr(5 /2−) + n(l =1,s =1/2)→50 Cr(Jπ =1+,2+,3+,4+)

€ 

51Cr(7 /2−) + n(l =1,s =1/2)→52 Cr(Jπ =2+,3+,4+,5+)



NLD: reaction rates 
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talys 1.2 : www.talys.eu Rauscher & Thielemann ADNDT 75, 1 (2000) 
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Constant Temperature NLD 
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Two formulas are frequently used for the description of the total level density, the back-shifted
Fermi gas formula (BSFG) [1],

ρBSFG(E) =
e2
√

a(E−E1)

12
√
2σa1/4(E − E1)5/4

(2)

with the free parameters a and E1, and the constant temperature formula (CT) [1],

ρCT (E) =
1

T
e(E−E0)/T (3)

with the free parameters T and E0.
These formulas were found equivalent in describing the experimental data at excitation

energies generally below 10 MeV [2, 3, 4]. The parameters of the level density formulas can
be experimentally obtained by fitting known energy levels of complete level schemes at low
excitation energies together with neutron resonances at the neutron binding energy. This
approach was described in refs. [2, 3, 4]. In the present article we review the recent work
along this line. The free parameters of both the spin distribution function and the two level
density models were determined by a fit to updated experimental level scheme data. We use a
database of complete low-energy level schemes for 310 nuclei between 19F and 251Cf. For most
of these nuclei the neutron resonance densities were also known. A list of these nuclei is given in
[4]. For the sets of empirical values for both the spin-cutoff parameter of the spin distribution
function and the parameters of the BSFG and CT models, we propose simple formulas that
can be easily calculated using only quantities from the mass tables. These formulas can be
used to obtain reasonable estimations for the level densities of nuclei farther from stability.
Finally, recent experimental evidence is reviewed that at low excitation energy the Constant
Temperature model is the more correct description of nuclei.

2. Spin distribution function
The spin distribution function f(J) in eq. (1) is described by the formula proposed by Ericson
[6]

f(J,σ) = e−J2/2σ2 − e−(J+1)2/2σ2 ≈ 2J + 1

2σ2
e−J(J+1/2)/2σ2

(4)

with a single free parameter σ. The spin-cutoff parameter σ is generally related to an
effective moment of inertia. This parameter may depend on the nuclear mass A, the
level density parameter a or the nuclear temperature T . Also, it is predicted to increase
with the excitation energy E. Different formulas were proposed for these dependencies
[1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Because of these ambiguities and in addition due to
the lack of systematic experimental information we performed studies of the spin distribution
function, using the actual knowledge of the discrete levels at low excitation energies.

2.1. Staggering of spin distribution function in even-even nuclei
In a first study [17], we concentrated on the general evolution of the spin-cutoff parameter
σ at low excitation energies, with the mass number and possibly other quantities, without
considering a dependence on the excitation energies. From our database with 310 nuclei, we
selected complete level schemes in a given energy (usually up to 1 – 3 MeV excitation) and spin
range. This procedure yielded 8116 levels (with known spin value) in 1556 spin groups (levels
with the same spin in a nucleus).

An important outcome of this study has been the observation of a spin staggering of the spin
distribution function for the even-even nuclei. This is illustrated in Fig. 1 for the nucleus 112Cd
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Bucurescu 

PRC 72, 044311 
(2005), PRC 72, 
067304, PRC 80, 
054310 (2009), JoP 
Conf Ser 338, 012028 
(2012) 

2.2. Energy dependence of the spin-cutoff parameter
The method mentioned in the preceding section, of counting levels in energy bins, is not adequate
to deduce the dependence of σ on the excitation energy because there are not enough levels with
known spin. In a subsequent paper [20] we propose the ”moment method” which exploits both
the energy and spin dependence of a given nuclear level scheme, as shown in Fig. 4.
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Figure 4. Example of the complete level scheme of 116Sn up to Ex = 3.9 MeV, shown in
two dimensions: spin and excitation energy. Projections on the two axes illustrates the spin
distribution function and the level density, respectively.

Namely, we calculated individual moments in the (E, J) plane for each nucleus with the
known levels (Ei, Ji) in the given energy and spin range, M exp

m,n =
∑

i(J
m
i · En

i ). The following
nine moments were determined from the experimental values: J, J2, J3, J · E, J2 · E, J3 ·
E, J ·E2, J2 ·E2, J3 ·E2 and compared with the corresponding moments calculated with the
CT model, eq. (3), for the level density. In the fit procedure, the dependence on both mass
number A and excitation energy E were taken into account. The following result was obtained:

σ2 = 0.391 ·A0.675(E − 0.5 · Pa′)0.312. (7)

It is found that a backshift of the energy gives the best results. For this backshift we found
that Pa′, the so-called deuteron pairing energy, is very useful; this quantity will be discussed in
detail in the next section. Formula (7) gives a good description to the existing (rather sparse)
experimental determinations of σ ([20] and references therein). Because it is based mainly on
the known low-lying levels, we think that the use of this formula up to energies of the order of
the neutron binding energy is rather realistic. Formula (7) represents a practical alternative to
the more classical formulas, such as those based on statistical mechanical calculations [21] or
on the assumption of the nucleus as a rigid sphere [11], because both these formulas use the
theoretical level density parameter a. Our formula depends only on mass and excitation energy,
and through Pa′ it implicitly distinguishes between isobars (types of nucleus).
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Pairing phase transitions in nuclear wave functions

Mihai Horoi1 and Vladimir Zelevinsky2

1Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory,

Michigan State University, East Lansing, Michigan 48824-1321, USA
(Received 5 February 2007; published 3 May 2007)

The exact solution of the nuclear shell model is used for studying the phase transition from superfluid to
normal Fermi-liquid as a function of the pairing strength, excitation energy (or temperature), nuclear spin and
the presence of other types of residual interactions. The phase transition in a finite system is seen through the
change of properties of individual wave functions.

DOI: 10.1103/PhysRevC.75.054303 PACS number(s): 21.60.Cs, 21.30.Fe

I. INTRODUCTION

Significant effects of nuclear pairing correlations are
observed throughout the periodic table [1]. From the time
of seminal papers by Bohr, Mottelson, and Pines [2] and
Belyaev [3] it is well known that these correlations influence
considerably all nuclear properties. The current progress in
physics of nuclei far from stability requires better understand-
ing of nuclear pairing as one of essential factors defining the
limits of nuclear existence. This is also an important ingredient
in physics of many other mesoscopic systems and astrophysics
of neutron stars [4].

Approximations borrowed from macroscopic theory of
superconductivity are routinely used to treat the pairing
correlations in heavy nuclei. As a rule, the dynamics of
fermion pairs are substituted by the average pairing condensate
field ! [standard Bardeen-Cooper-Schrieffer (BCS) theory
or more elaborate Hartree-Fock-Bogoliubov (HFB) approach,
where the pairing field is self-consistently created by a
specific part of the particle interaction that corresponds to the
maximum attraction, “pairing interaction”]. The bulk phase
transition destroying superconductivity can be recognized
by the disappearance of !. The condensate approximation
violates particle number conservation and can be insufficient,
especially in small systems, such as nuclei or metallic clusters.
The fluctuations of the mean field become crucial in the region
of the phase transition smeared by the small size effects [5–7].
Special methods to improve the mean field approach by
restoring conservation laws and including pairing fluctuations
were developed, see for example [8,9], and references therein.

With the monopole pairing interaction, the BCS solution
is asymptotically exact in the thermodynamic limit of macro-
scopic systems. However the realistic interaction is much more
diverse than simple pairing. Pairs can be formed in different
quantum states, and the competition between different cou-
plings may lead to their complicated interplay. The interaction
contains other coherent components responsible for collective
excitations (in nuclei—shape vibrations and deformation of
the mean field). Incoherent parts of the interaction induce the
stochastization of dynamics. As excitation energy and level
density increase, the processes of collision-like mixing convert
many-body stationary states into complicated superpositions
of a very large number of simple configurations. In the BCS

or HFB approaches, the incoherent interactions are neglected
to the extent that they do not contribute to the mean field. In
macroscopic systems these effects are presumably included
in the Fermi-liquid renormalization of the quasiparticles. In
the nuclear shell model, the additional interactions appear
explicitly being responsible for the rapid growth of complexity
of the eigenstates [10,11].

The models using the schematic pairing-type interactions
[12] exhibit sharp changes of the level density related to the
pair breaking. Then the excited states can be approximately
labeled by the number of unpaired quasiparticles (seniority).
Additional interactions mix the classes of states with different
seniority. This mixing along with the finite size effects level
off those changes as well as the manifestations of the phase
transition occurring as excitation energy increases. This does
not contradict to the survival of remnants of pairing correla-
tions in the structure of the eigenfunctions. The presence of
correlations in chaotic wave functions due to the two-body
nature of the interaction was stressed earlier [13,14]. Another
and very important signature of correlations is a regular
behavior of strength for specific simple operators as a function
of excitation energy, for example in the case of Gamow-Teller
transitions [15], or the accumulation of the strength in the form
of giant resonances. The latter are essentially analogs of scars
known in simple model systems used for studying quantum
chaos [16]. Similarly, we expect the tail of pairing correlations
to stretch in the chaotic region beyond the formal point of the
BCS or HFB phase transition.

One also needs to mention that small systems with their
exact constants of motion, such as angular momentum, parity,
and isospin in nuclei, have their specific features not reflected
in macroscopic approaches. First, these exact conservation
laws bring in additional correlations between the classes of
states governed by the same Hamiltonian [17,18]. Second, at
high level density, complicated schemes of vector coupling
serve as a source of geometric chaoticity [19,20] unrelated
to the residual interaction. Finally, the nonzero angular
momentum is in some sense similar to the magnetic field
destroying superconducting pair correlations, although it acts
differently from an external field.

The nuclear shell model provides a convenient testing
ground for studying both single-particle and collective features
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as well as the evolution of complexity and chaos in a function
of excitation energy and angular momentum [11,19,21]. The
semiempirical effective Hamiltonians fitted by the spectro-
scopic information available in the lowest part of the spectrum
nicely reproduce the multitude of experimental data [22–24].
Using the same Hamiltonians for the many-body problem
at higher excitation energy, we expect that the statistical
properties of the energy spectrum and the structure of the
eigenstates in the model will reflect the actual features of
nuclear dynamics. The typical dimensions of such calculations
are sufficiently large to reduce statistical fluctuations. At
the same time, the results can be rapidly and effectively
analyzed.

From the conventional point of view, the pairing cor-
relations are caused by the enhanced attractive two-body
matrix elements ⟨(j 2

2 )J=0|V |(j 2
1 )J=0⟩ corresponding to the

self-energy of the monopole pair (j1 = j2) or to the coherent
pair transfer between the orbitals j1 and j2. In light nuclei,
neutrons and protons occupy the same orbitals. Assuming the
j − j coupling and exact isospin symmetry, one can expect the
dominance of the pairing in the pair state with isospin T = 1
[25] (another possibility is the isoscalar spin-triplet pairing
of a quasideuteron type with the L = 0, S = 1, T = 0 pairs).
The isospin-invariant pairing is important for the symmetric
(N ≈ Z) nuclei near the proton drip line [26,27]. The pairing
is also the main interaction making many neutron-rich nuclei
particle-stable. It was studied in the group-theoretical models
[28] as well as in various microscopic calculations [25,29].
The temperature evolution of the isoscalar and isovector
pairing was investigated in the shell model [26] with the
realistic Hamiltonian using the Monte Carlo techniques; such
approaches, however, are useless for the purpose of studying
the properties of individual wave functions.

An important advantage of the shell-model analysis com-
pared to the BCS or HFB approximations is that all constants
of motion, particle number, total angular momentum, and
isospin, are exactly conserved, and therefore one does not
need any additional efforts for restoring correct symmetry
of the states. The results can thus be analyzed for a specific
class of states in a specific nucleus [11,30]. Solving the shell
model explicitly in the truncated Hilbert space we obtain the
eigenfunctions which contain all interaction effects including
pairing, with the conservation laws strictly fulfilled. Therefore
we do not need any additional mean field approximations.
With no external heat bath, the phase transition, if it does exist,
should manifest itself through the change of the properties of
individual eigenstates as a function of excitation energy, or of
an equivalent intrinsic temperature scale. Indeed, the pairing
phase transition was clearly observed [11,31] in the shell-
model calculations for J πT = 0+0 states in sd-nuclei. Starting
with only the pairing interaction in the exact diagonalization
[32] one can develop new approximations for other parts of the
interaction based on the exact pairing solution. Measuring the
sensitivity of exact wave functions to special perturbations [33]
one can probe the transitional regions for various pairing
modes. Nontrivial features of such results are the important
role of non-pairing parts of the residual interaction, which may
smear the regular band-like structure of excited states related
to the seniority quantum number, and the long fluctuational tail

of enhanced pairing correlations beyond the transition point, a
generic feature of mesoscopic systems [34,35].

Below we present the results on the pairing properties of
individual eigenstates in the shell model. We use even-even
nuclei as an object of investigation and study the dependence
of the pairing correlator for the given class of states J πT
on various parameters; we also compare the classes with
different nuclear spins J and isospins T . Within each class the
results depend upon the type of interaction and the interaction
strength. The results indicate an important role played by
geometric effects in mesoscopic systems.

II. PAIRING CORRELATOR

As in our first study of the pairing effects [11], we select as
a probe the operator of pairing interaction

HP =
∑

t=0,±1

P
†
t Pt , (1)

where the monopole isovector pair operators with the isospin
projection t are defined in terms of the fermion operators
ajmτ and a

†
jmτ coupled to the total angular momentum L = 0

(we use this notation in order to distinguish the pair angular
momentum L from the many-body angular momentum of
nuclear states J ) and isospin T = 1 according to

Pt = 1√
2

∑

j

[ãj ãj ]L=0,T =1,T3=t ,

(2)
P

†
t = 1√

2

∑

j

[a†
j a

†
j ]L=0,T =1,T3=t .

Here the sums are taken over all single-particle spherical
orbitals j in truncated shell-model space. For each aλ ≡ ajmτ ,
where m = jz and τ = ±1/2 are projections of the single-
particle angular momentum and isospin, respectively, the time
conjugate operator is defined as ãλ = (−)j−maj−mτ , so that
˜̃aλ = −aλ.

The expectation values of the operators (2) are proportional
to the energy gap parameter $ in BCS-like theories using
variational wave functions of fermionic condensate. These
expectation values identically vanish in exact stationary states
with a fixed particle number. The quadratic combination (1)
is positively defined and does not vanish even in a normal
Fermi-system. However, its excess as compared to the normal
background is related to the effects of superfluidity and
essentially measures the quantity proportional to |$|2. The
pair operators (2) characterize the strength of the pair transfer
to the neighboring nuclei which is the best analog of the
macroscopic superconducting current [1,36]. The expectation
value ⟨α|HP |α⟩ of the bilinear operator (1) for the eigenstate
|α⟩ of A particles gives the total strength for all transitions
from an initial state |α⟩ induced by the monopole pair removal
to the states of the nucleus with A − 2 particles (analog
of a sum rule). For low-lying states, this quantity can be
measured by pair transfer reactions. At higher excitation
energy, where individual states are not resolved, the knowledge
of the generic behavior of the pair correlator still might be
useful in estimating relevant cross sections as well as the
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as well as the evolution of complexity and chaos in a function
of excitation energy and angular momentum [11,19,21]. The
semiempirical effective Hamiltonians fitted by the spectro-
scopic information available in the lowest part of the spectrum
nicely reproduce the multitude of experimental data [22–24].
Using the same Hamiltonians for the many-body problem
at higher excitation energy, we expect that the statistical
properties of the energy spectrum and the structure of the
eigenstates in the model will reflect the actual features of
nuclear dynamics. The typical dimensions of such calculations
are sufficiently large to reduce statistical fluctuations. At
the same time, the results can be rapidly and effectively
analyzed.

From the conventional point of view, the pairing cor-
relations are caused by the enhanced attractive two-body
matrix elements ⟨(j 2

2 )J=0|V |(j 2
1 )J=0⟩ corresponding to the

self-energy of the monopole pair (j1 = j2) or to the coherent
pair transfer between the orbitals j1 and j2. In light nuclei,
neutrons and protons occupy the same orbitals. Assuming the
j − j coupling and exact isospin symmetry, one can expect the
dominance of the pairing in the pair state with isospin T = 1
[25] (another possibility is the isoscalar spin-triplet pairing
of a quasideuteron type with the L = 0, S = 1, T = 0 pairs).
The isospin-invariant pairing is important for the symmetric
(N ≈ Z) nuclei near the proton drip line [26,27]. The pairing
is also the main interaction making many neutron-rich nuclei
particle-stable. It was studied in the group-theoretical models
[28] as well as in various microscopic calculations [25,29].
The temperature evolution of the isoscalar and isovector
pairing was investigated in the shell model [26] with the
realistic Hamiltonian using the Monte Carlo techniques; such
approaches, however, are useless for the purpose of studying
the properties of individual wave functions.

An important advantage of the shell-model analysis com-
pared to the BCS or HFB approximations is that all constants
of motion, particle number, total angular momentum, and
isospin, are exactly conserved, and therefore one does not
need any additional efforts for restoring correct symmetry
of the states. The results can thus be analyzed for a specific
class of states in a specific nucleus [11,30]. Solving the shell
model explicitly in the truncated Hilbert space we obtain the
eigenfunctions which contain all interaction effects including
pairing, with the conservation laws strictly fulfilled. Therefore
we do not need any additional mean field approximations.
With no external heat bath, the phase transition, if it does exist,
should manifest itself through the change of the properties of
individual eigenstates as a function of excitation energy, or of
an equivalent intrinsic temperature scale. Indeed, the pairing
phase transition was clearly observed [11,31] in the shell-
model calculations for J πT = 0+0 states in sd-nuclei. Starting
with only the pairing interaction in the exact diagonalization
[32] one can develop new approximations for other parts of the
interaction based on the exact pairing solution. Measuring the
sensitivity of exact wave functions to special perturbations [33]
one can probe the transitional regions for various pairing
modes. Nontrivial features of such results are the important
role of non-pairing parts of the residual interaction, which may
smear the regular band-like structure of excited states related
to the seniority quantum number, and the long fluctuational tail

of enhanced pairing correlations beyond the transition point, a
generic feature of mesoscopic systems [34,35].

Below we present the results on the pairing properties of
individual eigenstates in the shell model. We use even-even
nuclei as an object of investigation and study the dependence
of the pairing correlator for the given class of states J πT
on various parameters; we also compare the classes with
different nuclear spins J and isospins T . Within each class the
results depend upon the type of interaction and the interaction
strength. The results indicate an important role played by
geometric effects in mesoscopic systems.

II. PAIRING CORRELATOR

As in our first study of the pairing effects [11], we select as
a probe the operator of pairing interaction

HP =
∑

t=0,±1

P
†
t Pt , (1)

where the monopole isovector pair operators with the isospin
projection t are defined in terms of the fermion operators
ajmτ and a

†
jmτ coupled to the total angular momentum L = 0

(we use this notation in order to distinguish the pair angular
momentum L from the many-body angular momentum of
nuclear states J ) and isospin T = 1 according to

Pt = 1√
2

∑

j

[ãj ãj ]L=0,T =1,T3=t ,

(2)
P

†
t = 1√

2

∑

j

[a†
j a

†
j ]L=0,T =1,T3=t .

Here the sums are taken over all single-particle spherical
orbitals j in truncated shell-model space. For each aλ ≡ ajmτ ,
where m = jz and τ = ±1/2 are projections of the single-
particle angular momentum and isospin, respectively, the time
conjugate operator is defined as ãλ = (−)j−maj−mτ , so that
˜̃aλ = −aλ.

The expectation values of the operators (2) are proportional
to the energy gap parameter $ in BCS-like theories using
variational wave functions of fermionic condensate. These
expectation values identically vanish in exact stationary states
with a fixed particle number. The quadratic combination (1)
is positively defined and does not vanish even in a normal
Fermi-system. However, its excess as compared to the normal
background is related to the effects of superfluidity and
essentially measures the quantity proportional to |$|2. The
pair operators (2) characterize the strength of the pair transfer
to the neighboring nuclei which is the best analog of the
macroscopic superconducting current [1,36]. The expectation
value ⟨α|HP |α⟩ of the bilinear operator (1) for the eigenstate
|α⟩ of A particles gives the total strength for all transitions
from an initial state |α⟩ induced by the monopole pair removal
to the states of the nucleus with A − 2 particles (analog
of a sum rule). For low-lying states, this quantity can be
measured by pair transfer reactions. At higher excitation
energy, where individual states are not resolved, the knowledge
of the generic behavior of the pair correlator still might be
useful in estimating relevant cross sections as well as the
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TABLE I. The low lying J πT =
0+0 energy levels (MeV) of 28Si found
in the experiment [37] and predicted by
the 1s − 0d shell model.

Exp. [37] Shell model

0 0
4.98 5.01
6.69 7.24
8.95 9.87

11.14 10.36
12.30 12.17
12.81 12.87
12.97 13.67
13.23 14.19
14.39 14.64

temperature-dependent characteristics, such as the moment of
inertia.

Earlier we calculated [11,31] the expectation values
⟨α|HP |α⟩ for all individual J πT = 0+0 states in two systems,
eight valence particles in 24Mg (dimension d = 325 states) and
12 valence particles in 28Si (d = 839). The Brown-Wildenthal
universal sd (USD) set of two-body interaction matrix elements
[22] was used that reproduces well the available spectroscopic
data in many sd-nuclei. For example, all ten 0+0 states with
excitation energy lower than 15 MeV resolved in the experi-
ment [37] in 28Si agree with the shell-model calculations, both
in their number and in the level spacings, see Table I.

Below we refer to the two-body interaction matrix elements
for L = 0, T = 1 pairs as “pairing matrix elements". In the
USD Hamiltonian for sd-shell nuclei these matrix elements
are negative and vary from −1.1 MeV to −3.2 MeV. Their
values can be found in Table II. The calculation of ⟨HP ⟩ is
facilitated by the fact that it can be treated as a specific residual
interaction with the two-body matrix elements

〈(
j 2

2

)
LT

∣∣VP

∣∣(j 2
1

)
LT

〉
= [(2j1 + 1)(2j2 + 1)]1/2δL0δT 1. (3)

Thus, the operator (1) is universal, and its eigenvalues reflect
only the structure of corresponding eigenfunctions.

As a reference point for further discussion we show in
Fig. 1 the pair correlator (1) calculated in Ref. [11] for all
states J πT = 0+0 in the sd-model of 24Mg, panels (a), (c), (e)
and 28Si, panels (b), (d), (f). In the lower panels (e) and (f),
all 63 matrix elements allowed for two-body interactions in
the sd-space are taken into account in the diagonalization. The
upper panels (a) and (b) show the pronounced seniority related

TABLE II. Two-body reduced matrix
elements (in MeV) for L = 0, T = 1 pair
states within the 1s − 0d shell-model
space.

s2
1/2 d2

3/2 d2
5/2

s2
1/2 −2.125 −1.084 −1.325

d2
3/2 −2.185 −3.186

d2
5/2 −2.820
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FIG. 1. The pair correlator of Eq. (1) for J πT = 0+0 states in the
sd-model of 24Mg, panels (a), (c), and (e), and 28Si, panels (b), (d),
and (f). The individual points correspond to the eigenstates ordered
in increasing energy. Panels (a) and (b) show the results for the pure
pairing interaction of Table II, while panels (c) and (d) are calculated
for the interaction where the pairing matrix elements are set to zero;
the results for the full realistic interaction are given in panels (e)
and (f).

structures in the case when the pairing was the only included
interaction. The intermediate panels (c) and (d) illustrate the
model with pairing interaction excluded from the full set
of matrix elements. The eigenstates |α⟩ are ordered in their
increasing energy. We summarize the instructive features of
these results:

(i) in the full calculation, the pair correlator changes
smoothly with excitation energy (or equivalent effective
temperature); no appreciable seniority structures are
visible;

(ii) the first dozen of low-lying states in lower panels have
a significant excess of pair correlations; in the case of
28Si, those are essentially the same states that were
found in the previously referred experiment [37];

(iii) the detailed analysis [11] indicates the analog of the
smoothed second order phase transition in the end of
the sequence of the “paired” states of point (ii);

(iv) beyond the transition point, one still sees a long
exponential tail of “fluctuational superconductivity”;

(v) the background of the lower plots is close to the
results of panels c and d obtained with no pairing;
this corresponds to the normal Fermi-gas behavior with
the single-particle occupation numbers found in the
shell-model calculation;

(vi) with the pure pairing interaction (and other matrix
elements artificially set to zero), Figs. 1(a) and 1(b),
the full pattern of seniority families is restored.

We start our new studies with the dependence of the pair
correlator on the pairing strength. Figure 2 shows the value of
⟨HP ⟩ for the ground state of 24Mg as a function of an overall
scaling factor g introduced into the pairing matrix elements
of the residual interaction with g = 1 corresponding to the
realistic strength of Table II. The nonpairing matrix elements
of the full shell model interaction are kept intact.
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The exact solution of the nuclear shell model is used for studying the phase transition from superfluid to
normal Fermi-liquid as a function of the pairing strength, excitation energy (or temperature), nuclear spin and
the presence of other types of residual interactions. The phase transition in a finite system is seen through the
change of properties of individual wave functions.

DOI: 10.1103/PhysRevC.75.054303 PACS number(s): 21.60.Cs, 21.30.Fe

I. INTRODUCTION

Significant effects of nuclear pairing correlations are
observed throughout the periodic table [1]. From the time
of seminal papers by Bohr, Mottelson, and Pines [2] and
Belyaev [3] it is well known that these correlations influence
considerably all nuclear properties. The current progress in
physics of nuclei far from stability requires better understand-
ing of nuclear pairing as one of essential factors defining the
limits of nuclear existence. This is also an important ingredient
in physics of many other mesoscopic systems and astrophysics
of neutron stars [4].

Approximations borrowed from macroscopic theory of
superconductivity are routinely used to treat the pairing
correlations in heavy nuclei. As a rule, the dynamics of
fermion pairs are substituted by the average pairing condensate
field ! [standard Bardeen-Cooper-Schrieffer (BCS) theory
or more elaborate Hartree-Fock-Bogoliubov (HFB) approach,
where the pairing field is self-consistently created by a
specific part of the particle interaction that corresponds to the
maximum attraction, “pairing interaction”]. The bulk phase
transition destroying superconductivity can be recognized
by the disappearance of !. The condensate approximation
violates particle number conservation and can be insufficient,
especially in small systems, such as nuclei or metallic clusters.
The fluctuations of the mean field become crucial in the region
of the phase transition smeared by the small size effects [5–7].
Special methods to improve the mean field approach by
restoring conservation laws and including pairing fluctuations
were developed, see for example [8,9], and references therein.

With the monopole pairing interaction, the BCS solution
is asymptotically exact in the thermodynamic limit of macro-
scopic systems. However the realistic interaction is much more
diverse than simple pairing. Pairs can be formed in different
quantum states, and the competition between different cou-
plings may lead to their complicated interplay. The interaction
contains other coherent components responsible for collective
excitations (in nuclei—shape vibrations and deformation of
the mean field). Incoherent parts of the interaction induce the
stochastization of dynamics. As excitation energy and level
density increase, the processes of collision-like mixing convert
many-body stationary states into complicated superpositions
of a very large number of simple configurations. In the BCS

or HFB approaches, the incoherent interactions are neglected
to the extent that they do not contribute to the mean field. In
macroscopic systems these effects are presumably included
in the Fermi-liquid renormalization of the quasiparticles. In
the nuclear shell model, the additional interactions appear
explicitly being responsible for the rapid growth of complexity
of the eigenstates [10,11].

The models using the schematic pairing-type interactions
[12] exhibit sharp changes of the level density related to the
pair breaking. Then the excited states can be approximately
labeled by the number of unpaired quasiparticles (seniority).
Additional interactions mix the classes of states with different
seniority. This mixing along with the finite size effects level
off those changes as well as the manifestations of the phase
transition occurring as excitation energy increases. This does
not contradict to the survival of remnants of pairing correla-
tions in the structure of the eigenfunctions. The presence of
correlations in chaotic wave functions due to the two-body
nature of the interaction was stressed earlier [13,14]. Another
and very important signature of correlations is a regular
behavior of strength for specific simple operators as a function
of excitation energy, for example in the case of Gamow-Teller
transitions [15], or the accumulation of the strength in the form
of giant resonances. The latter are essentially analogs of scars
known in simple model systems used for studying quantum
chaos [16]. Similarly, we expect the tail of pairing correlations
to stretch in the chaotic region beyond the formal point of the
BCS or HFB phase transition.

One also needs to mention that small systems with their
exact constants of motion, such as angular momentum, parity,
and isospin in nuclei, have their specific features not reflected
in macroscopic approaches. First, these exact conservation
laws bring in additional correlations between the classes of
states governed by the same Hamiltonian [17,18]. Second, at
high level density, complicated schemes of vector coupling
serve as a source of geometric chaoticity [19,20] unrelated
to the residual interaction. Finally, the nonzero angular
momentum is in some sense similar to the magnetic field
destroying superconducting pair correlations, although it acts
differently from an external field.

The nuclear shell model provides a convenient testing
ground for studying both single-particle and collective features
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as well as the evolution of complexity and chaos in a function
of excitation energy and angular momentum [11,19,21]. The
semiempirical effective Hamiltonians fitted by the spectro-
scopic information available in the lowest part of the spectrum
nicely reproduce the multitude of experimental data [22–24].
Using the same Hamiltonians for the many-body problem
at higher excitation energy, we expect that the statistical
properties of the energy spectrum and the structure of the
eigenstates in the model will reflect the actual features of
nuclear dynamics. The typical dimensions of such calculations
are sufficiently large to reduce statistical fluctuations. At
the same time, the results can be rapidly and effectively
analyzed.

From the conventional point of view, the pairing cor-
relations are caused by the enhanced attractive two-body
matrix elements ⟨(j 2

2 )J=0|V |(j 2
1 )J=0⟩ corresponding to the

self-energy of the monopole pair (j1 = j2) or to the coherent
pair transfer between the orbitals j1 and j2. In light nuclei,
neutrons and protons occupy the same orbitals. Assuming the
j − j coupling and exact isospin symmetry, one can expect the
dominance of the pairing in the pair state with isospin T = 1
[25] (another possibility is the isoscalar spin-triplet pairing
of a quasideuteron type with the L = 0, S = 1, T = 0 pairs).
The isospin-invariant pairing is important for the symmetric
(N ≈ Z) nuclei near the proton drip line [26,27]. The pairing
is also the main interaction making many neutron-rich nuclei
particle-stable. It was studied in the group-theoretical models
[28] as well as in various microscopic calculations [25,29].
The temperature evolution of the isoscalar and isovector
pairing was investigated in the shell model [26] with the
realistic Hamiltonian using the Monte Carlo techniques; such
approaches, however, are useless for the purpose of studying
the properties of individual wave functions.

An important advantage of the shell-model analysis com-
pared to the BCS or HFB approximations is that all constants
of motion, particle number, total angular momentum, and
isospin, are exactly conserved, and therefore one does not
need any additional efforts for restoring correct symmetry
of the states. The results can thus be analyzed for a specific
class of states in a specific nucleus [11,30]. Solving the shell
model explicitly in the truncated Hilbert space we obtain the
eigenfunctions which contain all interaction effects including
pairing, with the conservation laws strictly fulfilled. Therefore
we do not need any additional mean field approximations.
With no external heat bath, the phase transition, if it does exist,
should manifest itself through the change of the properties of
individual eigenstates as a function of excitation energy, or of
an equivalent intrinsic temperature scale. Indeed, the pairing
phase transition was clearly observed [11,31] in the shell-
model calculations for J πT = 0+0 states in sd-nuclei. Starting
with only the pairing interaction in the exact diagonalization
[32] one can develop new approximations for other parts of the
interaction based on the exact pairing solution. Measuring the
sensitivity of exact wave functions to special perturbations [33]
one can probe the transitional regions for various pairing
modes. Nontrivial features of such results are the important
role of non-pairing parts of the residual interaction, which may
smear the regular band-like structure of excited states related
to the seniority quantum number, and the long fluctuational tail

of enhanced pairing correlations beyond the transition point, a
generic feature of mesoscopic systems [34,35].

Below we present the results on the pairing properties of
individual eigenstates in the shell model. We use even-even
nuclei as an object of investigation and study the dependence
of the pairing correlator for the given class of states J πT
on various parameters; we also compare the classes with
different nuclear spins J and isospins T . Within each class the
results depend upon the type of interaction and the interaction
strength. The results indicate an important role played by
geometric effects in mesoscopic systems.

II. PAIRING CORRELATOR

As in our first study of the pairing effects [11], we select as
a probe the operator of pairing interaction

HP =
∑

t=0,±1

P
†
t Pt , (1)

where the monopole isovector pair operators with the isospin
projection t are defined in terms of the fermion operators
ajmτ and a

†
jmτ coupled to the total angular momentum L = 0

(we use this notation in order to distinguish the pair angular
momentum L from the many-body angular momentum of
nuclear states J ) and isospin T = 1 according to

Pt = 1√
2

∑

j

[ãj ãj ]L=0,T =1,T3=t ,

(2)
P

†
t = 1√

2

∑

j

[a†
j a

†
j ]L=0,T =1,T3=t .

Here the sums are taken over all single-particle spherical
orbitals j in truncated shell-model space. For each aλ ≡ ajmτ ,
where m = jz and τ = ±1/2 are projections of the single-
particle angular momentum and isospin, respectively, the time
conjugate operator is defined as ãλ = (−)j−maj−mτ , so that
˜̃aλ = −aλ.

The expectation values of the operators (2) are proportional
to the energy gap parameter $ in BCS-like theories using
variational wave functions of fermionic condensate. These
expectation values identically vanish in exact stationary states
with a fixed particle number. The quadratic combination (1)
is positively defined and does not vanish even in a normal
Fermi-system. However, its excess as compared to the normal
background is related to the effects of superfluidity and
essentially measures the quantity proportional to |$|2. The
pair operators (2) characterize the strength of the pair transfer
to the neighboring nuclei which is the best analog of the
macroscopic superconducting current [1,36]. The expectation
value ⟨α|HP |α⟩ of the bilinear operator (1) for the eigenstate
|α⟩ of A particles gives the total strength for all transitions
from an initial state |α⟩ induced by the monopole pair removal
to the states of the nucleus with A − 2 particles (analog
of a sum rule). For low-lying states, this quantity can be
measured by pair transfer reactions. At higher excitation
energy, where individual states are not resolved, the knowledge
of the generic behavior of the pair correlator still might be
useful in estimating relevant cross sections as well as the
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as well as the evolution of complexity and chaos in a function
of excitation energy and angular momentum [11,19,21]. The
semiempirical effective Hamiltonians fitted by the spectro-
scopic information available in the lowest part of the spectrum
nicely reproduce the multitude of experimental data [22–24].
Using the same Hamiltonians for the many-body problem
at higher excitation energy, we expect that the statistical
properties of the energy spectrum and the structure of the
eigenstates in the model will reflect the actual features of
nuclear dynamics. The typical dimensions of such calculations
are sufficiently large to reduce statistical fluctuations. At
the same time, the results can be rapidly and effectively
analyzed.

From the conventional point of view, the pairing cor-
relations are caused by the enhanced attractive two-body
matrix elements ⟨(j 2

2 )J=0|V |(j 2
1 )J=0⟩ corresponding to the

self-energy of the monopole pair (j1 = j2) or to the coherent
pair transfer between the orbitals j1 and j2. In light nuclei,
neutrons and protons occupy the same orbitals. Assuming the
j − j coupling and exact isospin symmetry, one can expect the
dominance of the pairing in the pair state with isospin T = 1
[25] (another possibility is the isoscalar spin-triplet pairing
of a quasideuteron type with the L = 0, S = 1, T = 0 pairs).
The isospin-invariant pairing is important for the symmetric
(N ≈ Z) nuclei near the proton drip line [26,27]. The pairing
is also the main interaction making many neutron-rich nuclei
particle-stable. It was studied in the group-theoretical models
[28] as well as in various microscopic calculations [25,29].
The temperature evolution of the isoscalar and isovector
pairing was investigated in the shell model [26] with the
realistic Hamiltonian using the Monte Carlo techniques; such
approaches, however, are useless for the purpose of studying
the properties of individual wave functions.

An important advantage of the shell-model analysis com-
pared to the BCS or HFB approximations is that all constants
of motion, particle number, total angular momentum, and
isospin, are exactly conserved, and therefore one does not
need any additional efforts for restoring correct symmetry
of the states. The results can thus be analyzed for a specific
class of states in a specific nucleus [11,30]. Solving the shell
model explicitly in the truncated Hilbert space we obtain the
eigenfunctions which contain all interaction effects including
pairing, with the conservation laws strictly fulfilled. Therefore
we do not need any additional mean field approximations.
With no external heat bath, the phase transition, if it does exist,
should manifest itself through the change of the properties of
individual eigenstates as a function of excitation energy, or of
an equivalent intrinsic temperature scale. Indeed, the pairing
phase transition was clearly observed [11,31] in the shell-
model calculations for J πT = 0+0 states in sd-nuclei. Starting
with only the pairing interaction in the exact diagonalization
[32] one can develop new approximations for other parts of the
interaction based on the exact pairing solution. Measuring the
sensitivity of exact wave functions to special perturbations [33]
one can probe the transitional regions for various pairing
modes. Nontrivial features of such results are the important
role of non-pairing parts of the residual interaction, which may
smear the regular band-like structure of excited states related
to the seniority quantum number, and the long fluctuational tail

of enhanced pairing correlations beyond the transition point, a
generic feature of mesoscopic systems [34,35].

Below we present the results on the pairing properties of
individual eigenstates in the shell model. We use even-even
nuclei as an object of investigation and study the dependence
of the pairing correlator for the given class of states J πT
on various parameters; we also compare the classes with
different nuclear spins J and isospins T . Within each class the
results depend upon the type of interaction and the interaction
strength. The results indicate an important role played by
geometric effects in mesoscopic systems.

II. PAIRING CORRELATOR

As in our first study of the pairing effects [11], we select as
a probe the operator of pairing interaction

HP =
∑

t=0,±1

P
†
t Pt , (1)

where the monopole isovector pair operators with the isospin
projection t are defined in terms of the fermion operators
ajmτ and a

†
jmτ coupled to the total angular momentum L = 0

(we use this notation in order to distinguish the pair angular
momentum L from the many-body angular momentum of
nuclear states J ) and isospin T = 1 according to

Pt = 1√
2

∑

j

[ãj ãj ]L=0,T =1,T3=t ,

(2)
P

†
t = 1√

2

∑

j

[a†
j a

†
j ]L=0,T =1,T3=t .

Here the sums are taken over all single-particle spherical
orbitals j in truncated shell-model space. For each aλ ≡ ajmτ ,
where m = jz and τ = ±1/2 are projections of the single-
particle angular momentum and isospin, respectively, the time
conjugate operator is defined as ãλ = (−)j−maj−mτ , so that
˜̃aλ = −aλ.

The expectation values of the operators (2) are proportional
to the energy gap parameter $ in BCS-like theories using
variational wave functions of fermionic condensate. These
expectation values identically vanish in exact stationary states
with a fixed particle number. The quadratic combination (1)
is positively defined and does not vanish even in a normal
Fermi-system. However, its excess as compared to the normal
background is related to the effects of superfluidity and
essentially measures the quantity proportional to |$|2. The
pair operators (2) characterize the strength of the pair transfer
to the neighboring nuclei which is the best analog of the
macroscopic superconducting current [1,36]. The expectation
value ⟨α|HP |α⟩ of the bilinear operator (1) for the eigenstate
|α⟩ of A particles gives the total strength for all transitions
from an initial state |α⟩ induced by the monopole pair removal
to the states of the nucleus with A − 2 particles (analog
of a sum rule). For low-lying states, this quantity can be
measured by pair transfer reactions. At higher excitation
energy, where individual states are not resolved, the knowledge
of the generic behavior of the pair correlator still might be
useful in estimating relevant cross sections as well as the
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FIG. 5. The pair correlator for the yrast shell model states, in 28Si,
panels (a) (T = 0) and (b) (T = 1), and 24Mg, panels (c) (T = 0) and
(d) (T = 1).

superfluid nuclei by Grin’ and Larkin [46]. In this theory,
the pairing gap !(J ) changes with spin J (in the spirit of the
model, this evolution has to be taken along the yrast line of the
nucleus) as

!(J ) ≈ !(0)
[

1 − J (J + 1)
J 2

c

]
. (8)

Assuming that our pair correlator (1) is proportional to !2, we
come to the expression (8). The critical spin Jc in semiclassical
theory [46] can be estimated as

Jc = a
!(0)Ir

l0
, (9)

where a is a numerical factor, a ≈ 2/2.5, Ir the rigid body
moment of inertia and l0 the single-particle orbital momentum
at the Fermi surface. Equation (9) has a clear meaning: at this
condition the Coriolis force creates a perturbation of the order
of the pairing gap. The shell model results qualitatively agree
with the estimate Eq. (9). Assuming that the moment of inertia
is the quantity that is changing most from 24Mg to 28Si, we
predict the ratio Jc(Si)/Jc(Mg) = 1.27 that is coincides with
what comes from the corresponding values of the parameter
B in Table III.

However, Eq. (9), taken literally, would predict for 24Mg
with Ir = 2.8 MeV−1, a ≈ 2.5, l0 ≈ 2, and !(0) ≈ 2 MeV
(the BCS calculation gives the average over the orbitals value
of ! equal to 2.3 MeV for 24Mg and 1.9 MeV for 28Si) the

TABLE III. Parameters of Eq. (2),
the change of the pair correlator along
the yrast line for 24Mg and 28Si.

A T ⟨HP (0)⟩ B

24 0 18.75 175.9
24 1 15.56 220.7
28 0 25.12 285.7
28 1 22.62 344.8
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FIG. 6. The pair correlator in the sd shell model of 28Si and 24Mg
averaged over all states of given spin J for T = 0, panels (a) and (c),
and T = 1, panels (b) and (d).

critical spin Jc ≈ 8 that is significantly lower than the value 13
given by Table III. The semiclassical theory, as any mean field
approach, predicts a phase transition in !(J ) similar to that for
the critical magnetic field in bulk superconductors. However
in a small system the fluctuational effects exclude a sharp
disappearance and slope singularity of the order parameter.
Instead, we again see the tail in the region of J close to Jc,
where the semiclassical theory does not work. The parameter
B in Eq. (7) is determined by the geometry of the shell model
space rather than by the Coriolis forces.

2. Average pair correlator

The full shell model solution provides another interesting
information if one looks at the pair correlator averaged over all
states in a given JT class. Figures 6(a) and 6(b) show the result
of such averaging as a function of J for the states with T = 0
and T = 1, respectively, in 24Mg. There is no considerable
difference in the behavior of the pair correlator for these two
isospin values. The absolute value of ⟨HP ⟩ is only 20% of what
we had had for the yrast states. At J = 0, this value is 4.74 for
T = 0 and 4.81 for T = 1 states. This means that here we deal
with the normal Fermi-gas pair fluctuations rather than with the
superfluid pair condensate. Nevertheless, the J -dependence
still can be well described in the same way as in Eq. (7).
The critical parameter is the same for the two isospin classes,
B = 200.3 for T = 0 and B = 200.8 for T = 1, taking an
average value between the values of this parameter for T = 0
and T = 1 along the yrast-line, Table III.

The maximum possible spin of the sd configuration is
Jmax = 12 for 24Mg and 14 for 28Si. If one defines B =
Jc(Jc + 1), we can formally find here Jc ≈ 14 > Jmax for
24Mg. This means that there is no sharp cutoff in the behavior
of the pair correlator, and the semiclassical theory cannot
describe the tail emerging because of the finite size of the
system.
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Two formulas are frequently used for the description of the total level density, the back-shifted
Fermi gas formula (BSFG) [1],

ρBSFG(E) =
e2
√

a(E−E1)

12
√
2σa1/4(E − E1)5/4

(2)

with the free parameters a and E1, and the constant temperature formula (CT) [1],

ρCT (E) =
1

T
e(E−E0)/T (3)

with the free parameters T and E0.
These formulas were found equivalent in describing the experimental data at excitation

energies generally below 10 MeV [2, 3, 4]. The parameters of the level density formulas can
be experimentally obtained by fitting known energy levels of complete level schemes at low
excitation energies together with neutron resonances at the neutron binding energy. This
approach was described in refs. [2, 3, 4]. In the present article we review the recent work
along this line. The free parameters of both the spin distribution function and the two level
density models were determined by a fit to updated experimental level scheme data. We use a
database of complete low-energy level schemes for 310 nuclei between 19F and 251Cf. For most
of these nuclei the neutron resonance densities were also known. A list of these nuclei is given in
[4]. For the sets of empirical values for both the spin-cutoff parameter of the spin distribution
function and the parameters of the BSFG and CT models, we propose simple formulas that
can be easily calculated using only quantities from the mass tables. These formulas can be
used to obtain reasonable estimations for the level densities of nuclei farther from stability.
Finally, recent experimental evidence is reviewed that at low excitation energy the Constant
Temperature model is the more correct description of nuclei.

2. Spin distribution function
The spin distribution function f(J) in eq. (1) is described by the formula proposed by Ericson
[6]

f(J,σ) = e−J2/2σ2 − e−(J+1)2/2σ2 ≈ 2J + 1

2σ2
e−J(J+1/2)/2σ2

(4)

with a single free parameter σ. The spin-cutoff parameter σ is generally related to an
effective moment of inertia. This parameter may depend on the nuclear mass A, the
level density parameter a or the nuclear temperature T . Also, it is predicted to increase
with the excitation energy E. Different formulas were proposed for these dependencies
[1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Because of these ambiguities and in addition due to
the lack of systematic experimental information we performed studies of the spin distribution
function, using the actual knowledge of the discrete levels at low excitation energies.

2.1. Staggering of spin distribution function in even-even nuclei
In a first study [17], we concentrated on the general evolution of the spin-cutoff parameter
σ at low excitation energies, with the mass number and possibly other quantities, without
considering a dependence on the excitation energies. From our database with 310 nuclei, we
selected complete level schemes in a given energy (usually up to 1 – 3 MeV excitation) and spin
range. This procedure yielded 8116 levels (with known spin value) in 1556 spin groups (levels
with the same spin in a nucleus).

An important outcome of this study has been the observation of a spin staggering of the spin
distribution function for the even-even nuclei. This is illustrated in Fig. 1 for the nucleus 112Cd
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Figure 5. Level density parameters for the BSFG model. Rectangles with error bars:
experimentally determined values; red x symbols: values provided by formulas (9), (10).
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TJπ

e
E−E0 Jπ
TJπ
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Summary and Outlook 
ü  Shell model techniques describe and predict a large amount of data in light, 

medium, and heavy nuclei:  
ü  Energies and quantum numbers, Electromagnetic transition probabilities, 

Spectroscopic amplitudes, Beta decay, charge exchange, 2ν/0ν double-beta 
decay 

ü  Spin and parity dependent nuclear level densities 
ü  These observables are essential, but: 

ü  There is a clear need to obtain accurate effective Hamiltonians for enlarged, 
but tractable valence spaces. 

ü  Effective truncation scheme for configurations (partitions) 
ü  Constant temperature description of the J-dependent shell model NLD represents a 

new and powerful technique: 
ü  Provides inside into the physics of nuclei as mesoscopic systems 
ü  Can provide an efficient interface of the shell model nuclear level densities to 

reaction codes 
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