

SFB | TR12

Chaotic Scattering: New Exact Results and Comparison to Experiments

Thomas Guhr

Fifth Conference on Nuclei and Mesoscopic Physics (NMP17)

National Superconducting Cyclotron Laboratory

Michigan State University, East Lansing, March 2017

Collaborators

theory (Duisburg–Essen):

Santosh Kumar, André Nock, Hans-Jürgen Sommers

microwave experiment (Darmstadt):

Barbara Dietz, Maksym Miski-Oglu, Achim Richter, Florian Schäfer

we also use published nuclear scattering data

with microwave experiment: PRL **111** (2013) 030403 details of derivation: Ann. Phys. **342** (2014) 103 work in progress (2017)

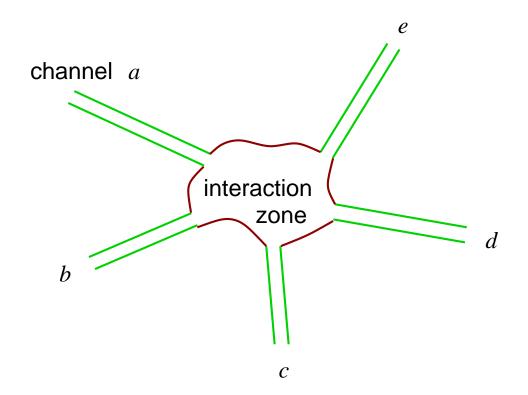
Outline

- some background: scattering, (quantum) chaotic scattering
- supersymmetry for distributions
- exact results for scattering matrix elements
- exact results for cross sections
- comparison with microwave experiments
- first steps towards comparison with nuclear data

Introduction: Scattering

Scattering Process

waves propagate in (fictitious) channels, scattered at target scattering matrix S connects ingoing and outgoing waves



M channels,

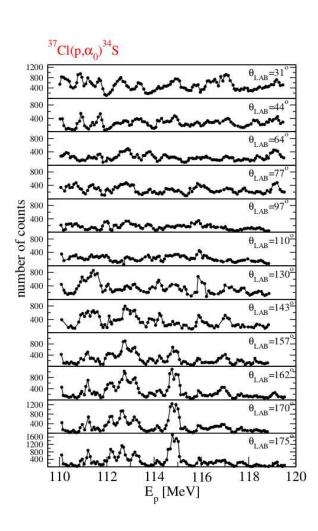
S is $M \times M$

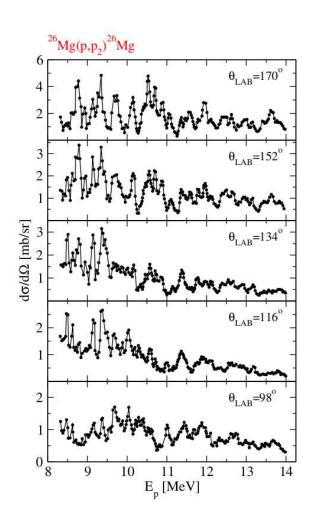
flux conservation

$$SS^{\dagger} = \mathbb{1}_M = S^{\dagger}S$$

no direct reactions $(a \neq b) \longrightarrow \text{energy average } \overline{S}$ diagonal transmission coefficients $T_a = 1 - |\overline{S_{aa}}|^2$

Scattering Experiments in Nuclear Physics

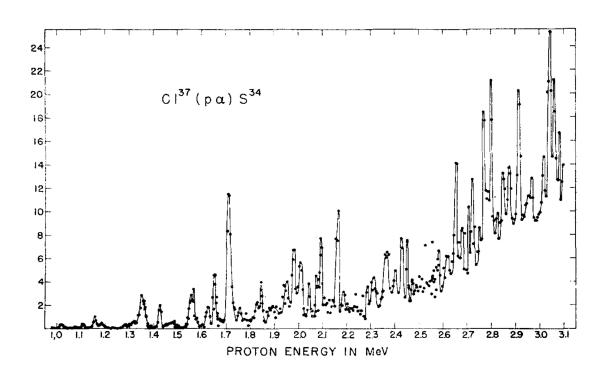




differential cross sections, squares of scattering matrix elements

this example: Richter et al. (1960's)

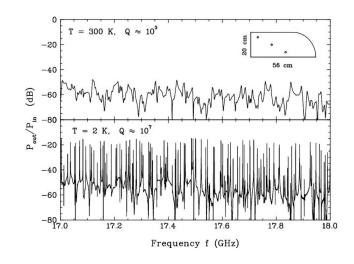
Different Regimes in Nuclear Scattering



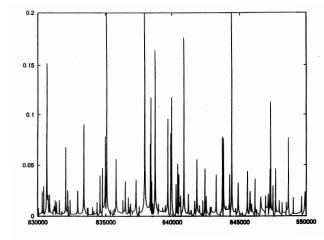
from isolated resonances towards Ericson regime

Clarke, Almqvist, Paul (1960's)

Scattering Experiments with Classical Waves



microwaves



elastic reveberations

direct measurement of the scattering matrix

Weaver, Ellegaard, Stöckmann, Richter, Shridar groups (90's...10's)

(Quantum) Chaotic Scattering

Mexico Approach to Stochastic Scattering

to study statistics, S itself modeled as a stochastic quantity minimum information principle yields probability measure

$$P(S)d\mu(S) \sim \frac{d\mu(S)}{|\det^{\beta(M-1)+2}(\mathbb{1}_M - S\langle S\rangle^{\dagger})|}$$

- no invariance under time-reversal: S unitary, $\beta=2$
- invariance under time—reversal:

 - \circ spin—rotation symmetry: S unitary symmetric, $\beta=1$ \circ no spin—rotation symmetry: S unitary self—dual, $\beta=4$

input: ensemble average $\langle S \rangle$, assume $\langle S \rangle = S$

problem: energy and parameter dependence not clear!

Microscopic Description of Scattering Process ...

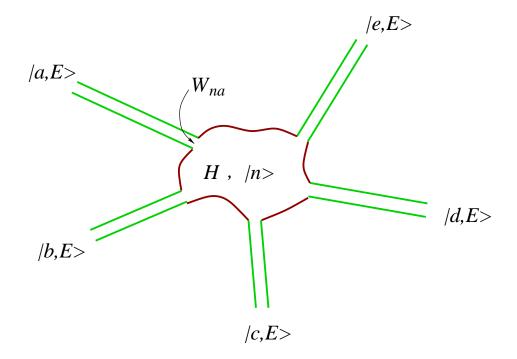
$$\mathcal{H} = \sum_{n,m=1}^{N} |n\rangle H_{nm} \langle m| + \sum_{a=1}^{M} \int dE |a, E\rangle E \langle a, E|$$
$$+ \sum_{n,a} \left(|n\rangle \int dE W_{na} \langle a, E| + \text{c.c.} \right)$$

bound states Hamiltonian H

 $N \gg 1$ bound states $|n\rangle$

M channel states $|a, E\rangle$

coupling W_{na}



... Yields Scattering Matrix

$$S_{ab}(E) = \delta_{ab} - i2\pi W_a^{\dagger} G(E) W_b$$

with matrix resolvent containing bound states Hamiltonian H

$$G(E) = \frac{\mathbb{1}_N}{E\mathbb{1}_N - H + i\pi \sum_{c=1}^M W_c W_c^{\dagger}}$$

absence of direct reactions consistent with orthogonality

$$W_a^{\dagger} W_b = \frac{\gamma_a}{\pi} \delta_{ab}$$

Heidelberg Approach to Stochastic Scattering

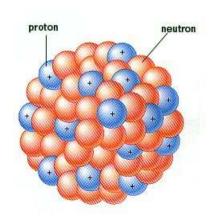
Hamiltonian H modeled as a Gaussian random matrix

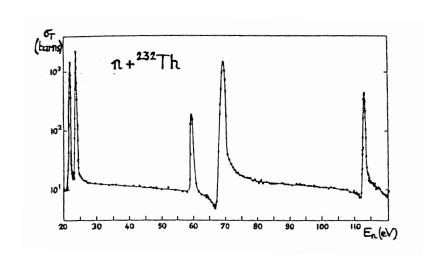
$$P(H) \sim \exp\left(-\frac{N\beta}{4v^2} \operatorname{tr} H^2\right)$$

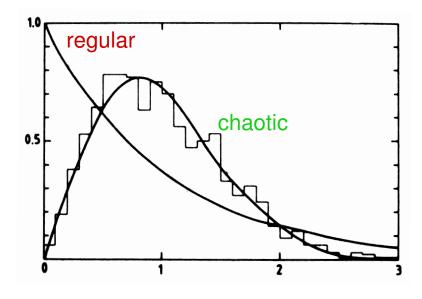
form of P(H) irrelevant on local scale of mean level spacing

- —> two universalities, experimental and mathematical
- no invariance under time—reversal: H Hermitean, $\beta=2$
- invariance under time—reversal:
 - \circ spin-rotation symmetry: H real symmetric, $\beta=1$
 - \circ no spin-rotation symmetry: H Hermitean self-dual, $\beta=4$

Chaotic Statistics, Example: Compound Nucleus







spacing distribution p(s)

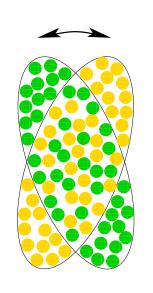
probability density to find two adjacent levels in distance s

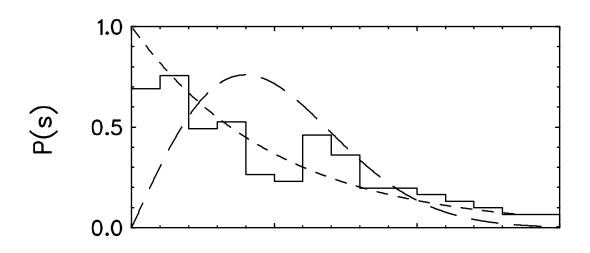
Bohigas, Haq, Pandey (1983)

Counter Example: Collective Excitations in Nuclei

single particle versus collective excitations

scissors mode oscillations, all neutrons ↔ all protons





- --> chaotic versus regular statistics
- crossover transitions are frequent!

Some Important Results in this Context

two-point correlation functions $\langle S_{ab}(E_1)S_{cd}(E_2)\rangle$

 $\beta = 1$ Verbaarschot, Weidenmüller, Zirnbauer (1985)

 $\beta = 2$ Savin, Fyodorov, Sommers (2006)

higher order correlations, perturbative time—invariance breaking Davis, Boosé (1988, 1989), Davis, Hartmann (1990)

distribution of diagonal elements $P(S_{aa}(E))$ Fyodorov, Savin, Sommers (2005)

correlation functions on mixing graphs Pluhař, Weidenmüller (2014)

obtained with supersymmetry, but does in this form not work for distribution $P(S_{ab}(E)), a \neq b \longrightarrow \text{new method needed}$

Supersymmetry for Distributions

Distribution of Scattering Matrix Elements

$$S_{ab}(E) = \delta_{ab} - i2\pi W_a^{\dagger} G(E) W_b$$

wish to calculate distribution of real and imaginary part

$$\wp_s(S_{ab}) = \pi \left((-i)^s W_a^{\dagger} G W_b + i^s W_b^{\dagger} G^{\dagger} W_a \right)$$

such that

$$x_1 = \wp_1(S_{ab}) = \operatorname{Re} S_{ab}(E)$$
 and $x_2 = \wp_2(S_{ab}) = \operatorname{Im} S_{ab}(E)$

distribution given by

$$P_s(x_s) = \int d[H] \exp(-\text{tr} H^2) \delta(x_s - \wp_s(S_{ab})), \quad s = 1, 2$$

Characteristic Function

obtain distribution by Fourier backtransform of

$$R_s(k) = \int d[H] \exp(-\operatorname{tr} H^2) \exp(-ik\wp_s(S_{ab}))$$

insert definition of scattering matrix

$$R_s(k) = \int d[H] \exp(-\operatorname{tr} H^2) \exp(-ik\pi W^{\dagger} A_s W)$$

with
$$W=\begin{bmatrix}W_a\\W_b\end{bmatrix}$$
 and $A_s=\begin{bmatrix}0&(-i)^sG\\i^sG^\dagger&0\end{bmatrix}$

where A_s Hermitean, but contains H inverse

problem: have to invert A_s to perform H average!

Crucial Trick

Fourier transform in W space! — Yields

$$\exp(-ik\pi W^{\dagger}A_{s}W)$$

$$\sim \int d[z] \exp\left(\frac{i}{2}(W^{\dagger}z + z^{\dagger}W)\right) \det^{\beta/2}A_{s}^{-1} \exp\left(\frac{i}{4\pi k}z^{\dagger}A_{s}^{-1}z\right)$$

now use anticommuting variables

$$\det^{\beta/2} A_s^{-1} \sim \int d[\zeta] \exp\left(\frac{i}{4\pi k} \zeta^{\dagger} A_s^{-1} \zeta\right)$$

now H linear in exponent \longrightarrow supersymmetry applicable!

different rôle of commuting and anticommuting variables

Supermatrix Model

Hubbard-Stratonovitch transformation gives

$$R_s(k) = \int d[\varrho] \exp\left(-r \operatorname{str} \varrho^2 - \frac{\beta}{2} \operatorname{str} \ln \Xi - \frac{i}{4} F_s\right)$$

with $8/\beta \times 8/\beta$ supermatrix ϱ and $r = 4\beta\pi^2k^2N/v^2$

$$\mathbf{\Xi} = \varrho_E \otimes \mathbb{1}_N + \frac{i}{4k} L \otimes \sum_{c=1}^M W_c W_c^{\dagger} , \quad \varrho_E = \varrho - \frac{E}{4\pi k} \mathbb{1}_{8/\beta}$$

matrix L is some superspace metrik

$$F_s \sim \left[W^\dagger \ 0^\dagger\right] \mathbf{\Xi}^{-1} \left[egin{array}{c} W \\ 0 \end{array}
ight]$$
 , projects onto boson—boson space

symmetry breaking differs from the one for correlations

Supersymmetric Non–Linear σ Model

limit $N\longrightarrow\infty$, unfolding by saddlepoint approximation integrate out "massive" modes

left with integral over "Goldstone" modes Q, free rotations, coset manifold in superspace

$$R_s(k) = \int d\mu(Q) \exp\left(-\frac{i}{4}F_s\right) \prod_{s=1}^{M} \operatorname{sdet}^{-\beta/2} \left(\mathbb{1}_{8/\beta} + \frac{i\gamma_c}{4\pi k} Q_E^{-1}L\right)$$

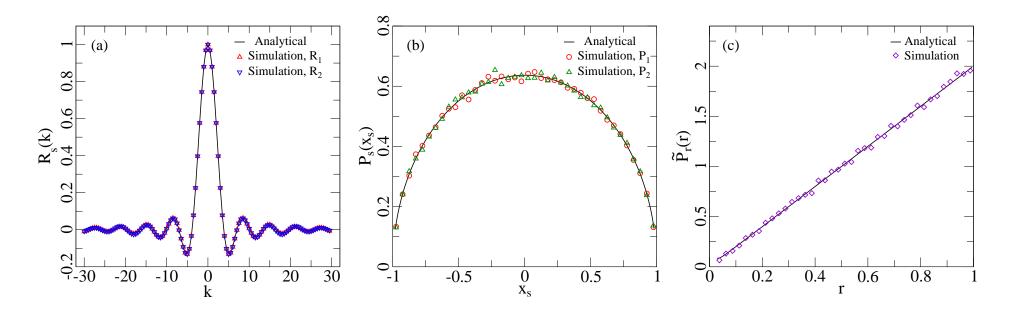
integrate out all remaining anticommuting variables

left with ordinary integrals, two for $\beta = 2$, four for $\beta = 1$

drastically reduced number of integration variables

Analytical Results versus Numerics

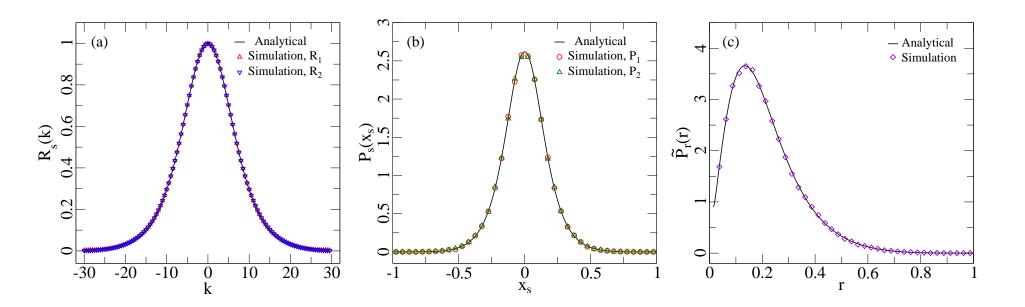
Reproducing the Circular Ensemble for $\beta=2$



number of channels M=2, energy E=0, width parameters $\gamma_1/D=1,\ \gamma_2/D=1$

real and imaginary parts always equally distributed for $\beta = 2$

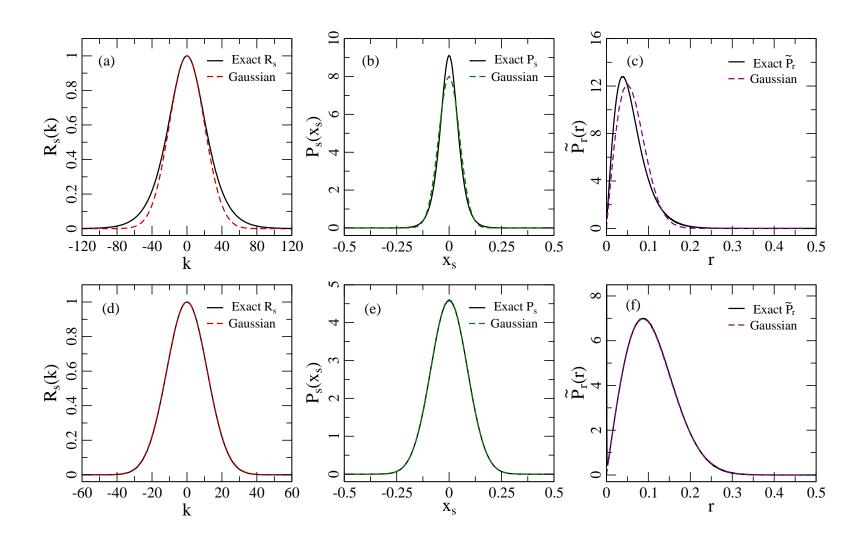
Far Away from the Circular Ensemble for $\beta=2$



number of channels M=5, energy E/D=1.2, width parameters γ_j/D between 0.08...0.72

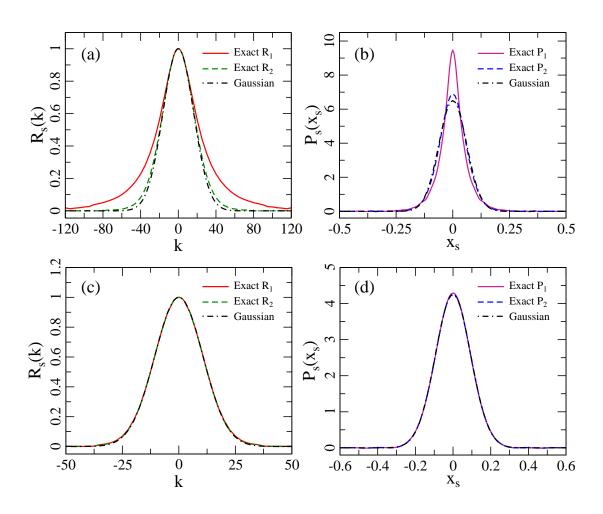
real and imaginary parts always equally distributed for $\beta = 2$

Towards Ericsson Regime for $\beta = 2$



average resonance width / mean level spacing $\Gamma/D=0.716$ (top) and $\Gamma/D=8.594$ (bottom)

Towards Ericsson Regime for $\beta = 1$

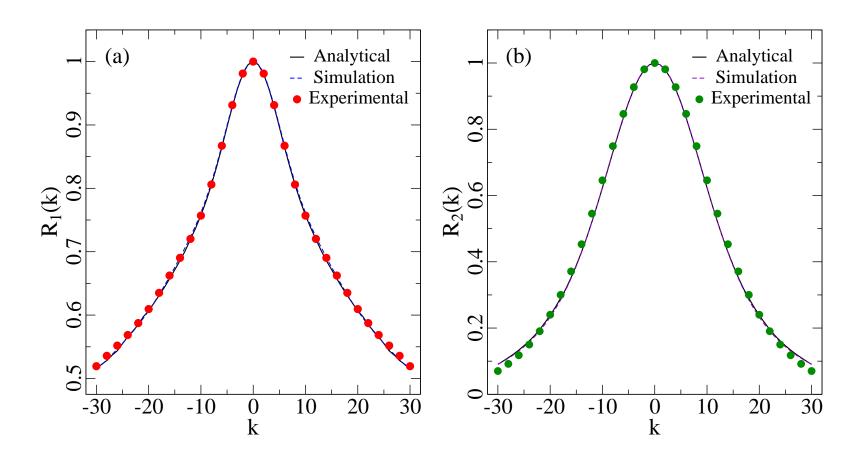


average resonance width / mean level spacing $\Gamma/D=1.273$ (top) and $\Gamma/D=7.162$ (bottom)

real and imaginary parts not equally distributed for $\beta = 1$

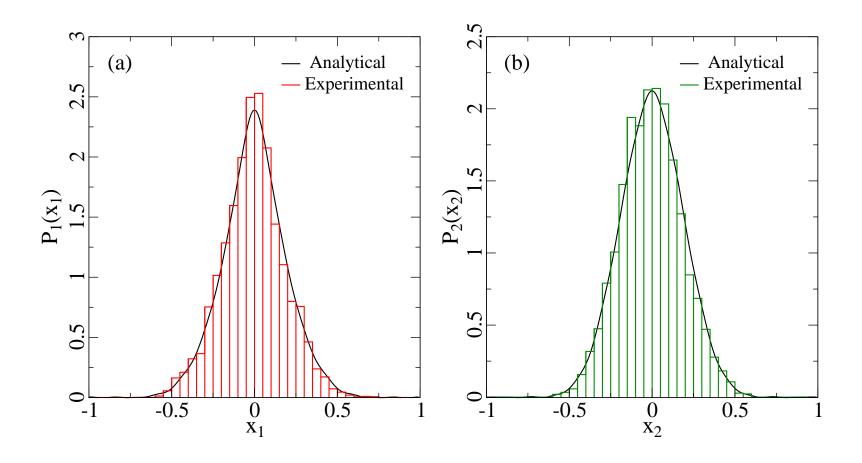
Analytical Results versus Microwave Experiment

... vs Numerics and Experiment for $\beta = 1$



frequency range $10...11 \mathrm{GHz}$, average resonance width / mean level spacing $\Gamma/D = 0.234$

Analytical Result vs Experiment for $\beta = 1$



frequency range $24\dots25{\rm GHz}$, average resonance width / mean level spacing $\Gamma/D=1.21$

Distribution of Cross Sections

No Way Around the Joint Probability Density

cross section
$$\sigma_{ab}(E) = |S_{ab}(E)|^2 = \operatorname{Re}^2 S_{ab}(E) + \operatorname{Im}^2 S_{ab}(E)$$

need joint pdf
$$P(\operatorname{Re} S_{ab}, \operatorname{Im} S_{ab}) = P(S_{ab}, S_{ab}^*)$$

to calculate
$$p(\sigma_{ab}) = \int d^2S_{ab} P(S_{ab}, S_{ab}^*) \delta(\sigma_{ab} - |S_{ab}|^2)$$

good news: can extend previous calculation into complex plane

characteristic
$$R(k, k^*) = \int d[H] \exp(-\operatorname{tr} H^2) \exp(-i\operatorname{Re} k^* S_{ab})$$

simply replace real k with complex $k = k_1 + ik_2$ everywhere

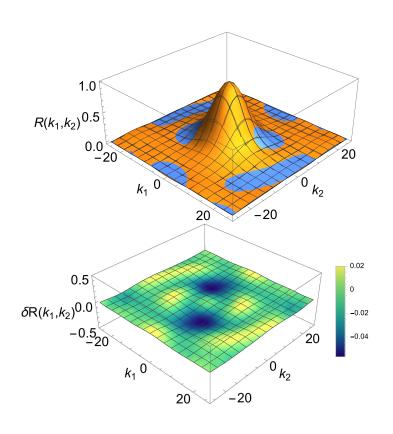
distribution
$$p(\sigma_{ab}(E)) = \int d^2k R(k, k^*) J_0(\sqrt{\sigma_{ab}(E)}|k|)$$

Analytical Results versus Microwave (and some Nuclear) Data

Characteristic Functions for Microwave Data

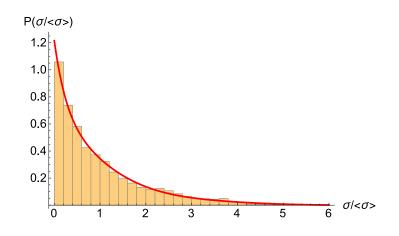


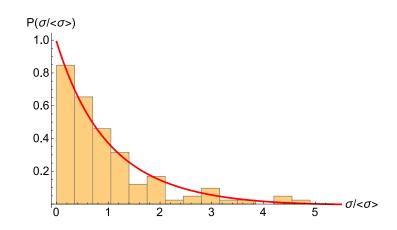
$$\Gamma/D = 0.234$$



$$\Gamma/D = 1.21$$

Cross Section Distributions





microwaves $\Gamma/D = 1.21$

nuclear data ${}^{37}\text{CI}(p,\alpha){}^{34}\text{S}$

 $p(0) \approx 1$ indicates Ericson regime

Conclusions and Outlook

- solved longstanding problem within Heidelberg approach
- now have supersymmetry for distributions
- distributions of scattering matrix elements and cross sections
- additional results: characteristic function generates moments, integral representations for all of them
- full analytical understanding of transition to Ericson regime
- Brouwer's equivalence proof Heidelberg—Mexico implies: now have explicit handle on Mexico approach for arbitrary channel number
- comparison with microwave and nuclear data
- also: condensed matter and wireless communication