Nuclei and Mesoscopic Physics (NMP17) FRIB at MSU, East Lansing March 6-10, 2017

Random Matrix Theory for Transition Strengths in Finite Quantum Many-particle Systems: Applications and Open Questions

V.K.B. Kota
 Physical Research Laboratory, Ahmedabad 380 009, India

Collaborators: Manan Vyas, R.U. Haq

1. Introduction

E.P. Wigner

J.B. French

Finite (small) isolated many particle systems:

Complex nuclei, atoms, molecules (also biological molecules), small devices of condensed matter and quantum optics on Nano- and micro-scale (ex: quantum dots, small metallic grains), cold atoms in optical lattices, ion traps, implementations of quantum computers involving many interacting q-bits, ,-----

$$
\boldsymbol{H}=\underbrace{\boldsymbol{h}(1)}_{\text {one-body }}+\underbrace{\boldsymbol{V}(2)}_{\text {two-body }}
$$

$$
\begin{aligned}
& H=h(1)+\lambda V(2) \\
& h(1)=\sum_{i} \varepsilon_{i} n_{i} ; n_{i}=a_{i}^{\dagger} a_{i} \\
& V(2)=\sum_{i>j, k>l}\langle k l| V|i j\rangle a_{k}^{\dagger} a_{l}^{\dagger} a_{j} a_{i}
\end{aligned}
$$

with m fermion (or bosons) in say N sp states
$\boldsymbol{d}=\binom{N}{m}$ or $\binom{N+m-1}{m}$
Now, H will be $d \times d$ matrix in m particle spaces
Large scale diagonalization using nuclear shell model, atomic structure calc, one dimensional interacting spins systems ------all with fixed \boldsymbol{h} and \boldsymbol{V} showed clearly:
statistical regularities in spectral averages, due to quantum chaos coming into play, with $\boldsymbol{\lambda}$ increasing

Although used with increasing frequency in many branches of Physics, (classical) random matrix ensembles sometimes are too unspecific to account for important features of the physical system at hand. One important refinement which retains the basic stochastic approach but allows for such features (to describe statistical properties) consists in the use of embedded ensembles

$$
\begin{aligned}
& \hat{H}=\hat{h}(1)+\lambda\{\hat{V}(2)\} \\
& \hat{h}(1)=\sum_{i} \varepsilon_{i} \hat{n}_{i} ; \varepsilon_{i} \text { interaction strength in units of } \Delta \\
& \text { fixed (TBRIM) } \\
& \text { random (TBRIM) }
\end{aligned}
$$

$\hat{V}(2)$ a random interaction \Leftrightarrow $\{\hat{V}(2)\}$ is $\operatorname{GOE}(1)$ in 2-particle space

Given m fermions in $N \mathrm{sp}$ states, we have in m-particle spaces embedded GOE of one plus two-body
interactions: EGOE(1+2)

$$
\begin{aligned}
& d_{f}(12,2)=66, \quad d_{f}(16,2)=120 \\
& d_{f}(12,6)=924, \quad d_{f}(16,8)=12870
\end{aligned}
$$

$\operatorname{EGOE}(1+2) \Leftrightarrow(m, N, \lambda / \Delta)$

Single particle spectrum Δ is average spacing for interacting boson systems we have BEGOE(1+2)

EE's generate Gaussian eigenvalue densities independent of λ; convergence is asymptotic; for small λ Poisson fluctuations

In EE, just as in many realistic systems, the behavior of various observables continues to evolve, even after NNSD is stabilized, with the strength (λ) of the perturbation. Therefore, more generally, quantum chaos is defined in terms of the (chaotic) structure of eigenstates, rather than in terms of level statistics. [BISZ]

As λ increases strength functions change form from BW to Gaussian and with further increase there will be thermalization with maximal wavefunction delocalization (within a energy shell!). Here with $\lambda \sim \lambda_{t}$, the spreading produced by $h(1)$ and $V(2)$ will be equal and thus generate maximum mixing with strength functions Gaussian and fluctuations GOE.

Many-body chaos \Leftrightarrow thermalization \Leftrightarrow RMT-EE \leftarrow complex nuclei

K.K. Mon and J.B. French, Ann. Phys. (N.Y.) 95 (1975) 90

VKBK, Phys. Rep. 347 (2001) 223.
VKBK, Embedded Random Matrix Ensembles in
Quantum Physics, Lecture Notes in Physics, Volume 884
(Springer, Heidelberg, 2014).
F. Borgonovi, F.M. Izrailev, L.F. Santos, and V.G. Zelevinsky, Phys. Rep. 626 (2016) 1.

Gaussian eigenvalue densities and Gaussian strength functions applied inconfiguration- \boldsymbol{J} spaces led to the interacting particle theory for nuclear level densities: Sen'kov and Zelevinsky, Phys. Rev. C 93, (2016) 064304 ; French et al, Can. J. Phys. 84 (2006) 677.

In this talk we will describe the current status of EE theory for transition strengths and one new application

2. RMT-EE for Transition Strengths

Transition strength density

$$
\begin{aligned}
\boldsymbol{I}_{o}\left(\boldsymbol{E}_{i}, \boldsymbol{E}_{f}\right) & \left.=\boldsymbol{I}\left(\boldsymbol{E}_{f}\right)\left|\left\langle\boldsymbol{E}_{f}\right| \boldsymbol{O}\right| \boldsymbol{E}_{i}\right\rangle\left.\right|^{2} \boldsymbol{I}\left(\boldsymbol{E}_{i}\right) \\
& =\left\langle\left\langle\boldsymbol{O}^{\dagger} \boldsymbol{\delta}\left(\boldsymbol{H}-\boldsymbol{E}_{f}\right) \boldsymbol{O} \boldsymbol{\delta}\left(\boldsymbol{H}-\boldsymbol{E}_{i}\right)\right\rangle\right\rangle
\end{aligned}
$$

It is a bivariate density (with other quantum numbers - multivariate)

What is the form of $\overline{I_{o}\left(E_{i}, E_{f}\right)}$?
$\left.\begin{array}{l}\text { (i) } \boldsymbol{H} \text { is a EGOE/EGUE/EGSE } \\ \boldsymbol{O} \text { is fixed : DFW/HBZ }\end{array}\right\}$ problems O is fixed : DFW/HBZ
(ii) H is a EGOE/EGUE/EGSE
O is another independent EGOE/EGUE/EGSE
-- used first by FKPT (FI-KS-KM)

> \#(ii) gives results consistent with numerical Embedded Ensemble/Nuclear Shell Model

What is the form of $\overline{\rho_{o}^{\boldsymbol{H}}\left(\boldsymbol{E}_{i}, \boldsymbol{E}_{f}\right)}=\overline{\left\langle\boldsymbol{O}^{\dagger} \delta\left(\boldsymbol{H}-\boldsymbol{E}_{f}\right) \boldsymbol{O} \delta\left(\boldsymbol{H}-\boldsymbol{E}_{i}\right)\right\rangle}$? Here we employ EGOE/EGUE/EGSE for both \boldsymbol{H} and \boldsymbol{O} operators

$$
\overline{\rho_{O}^{H}\left(E_{i}, E_{f}\right)} \Leftrightarrow \text { moments } M_{P Q}=\overline{\left\langle O^{\dagger} H^{Q} O H^{P}\right\rangle}
$$

$$
\hat{M}_{P Q}=M_{P Q} / M_{00} ; \mu_{P Q}=\left[\hat{M}_{20}\right]^{-P / 2}\left[\hat{M}_{02}\right]^{-Q / 2} \hat{M}_{P Q}
$$

$\mu_{11}=\xi$ is the bivariate correlation coefficient
fourth order cumulants (shape parameters) are:

$$
\begin{aligned}
& k_{40}=\mu_{40}-3, k_{04}=\mu_{04}-3, k_{31}=\mu_{31}-3 \xi \\
& k_{13}=\mu_{13}-3 \xi, k_{22}=\mu_{22}-2 \xi^{2}-1
\end{aligned}
$$

Second and fourth order moments from RMT-EE: H represented by EGUE (k)
 O represented by an independent EGUE

VKBK and Manan Vyas, Ann. Phys. (N.Y.) 359 (2015) 252-289

Results are derived for:
\boldsymbol{t}-body operator ; identical spinless fermions [H a k-body operator - $\mathrm{U}(N)$ algebra]
k_{0} number of particles addition or removal operator; identical spinless fermions [H a k body operator - $\mathrm{U}(N)$ algebra]
β decay or $0 \nu-\beta \beta$ decay type operators; involves two types of spinless fermions $\left[H(k)=H_{11}+H_{22}+H_{12}\right.$ and $\mathrm{U}\left(N_{1}\right)+\mathrm{U}\left(N_{2}\right)$ algebra $]$

Extensions to boson systems some results are available

Independence of the EGUE's representing the H and O operators implies that we are removing the $\mathrm{H}-\mathrm{O}$ correlated part from the transition operator O. It is well known that

$$
\langle O\rangle^{m},\langle O H\rangle^{m} \text { and }\left\langle O H^{2}\right\rangle^{m}
$$

determine the expectation values of \boldsymbol{O} operator.
*Draayer, French and Wong, Ann. Phys. (N.Y.) 106 (1977) 472 VKBK, Ann. Phys. (N.Y.) 306 (2003) 58-77

Example:

beta decay and neutrinoless double beta

 decay type transition operators$\hat{H}=\sum_{i+j=k} \sum_{\alpha, \beta, a, b} V_{\alpha a ; \beta b}(i, j) A^{\dagger}\left(f_{i} v_{\alpha}\right) A\left(f_{i} v_{\beta}\right) A^{\dagger}\left(f_{j} v_{a}\right) A\left(f_{j} v_{b}\right) ;$
$V_{\alpha a ; \beta b}(i, j)=\left\langle f_{i} v_{\alpha} f_{j} v_{a}\right| \hat{H}\left|f_{i} v_{\beta} f_{j} v_{b}\right\rangle ; i+j=2$ for nuclei
$\hat{O}=\sum O_{\lambda d} A^{\dagger}\left(f_{k_{0}} v_{\lambda}\right) A\left(f_{k_{0}} v_{d}\right)$
$O_{\lambda d}=\left\langle \# 1: k_{0} \lambda\right| O\left|\# 2: k_{0} d\right\rangle ; k_{0}=1(\beta$ decay $), 2(\mathrm{NDBD})$
Note that we have $U\left(N_{1}\right)+U\left(N_{2}\right)$ symmetry for H. Given m_{1} particles in \#1 and m_{2} in \#2, the irreps are (m_{1}, m_{2}) and the action of O changes $\left(m_{1}, m_{2}\right)$ to $\left(m_{1}+k_{0}, m_{2}-k_{0}\right)$

GUE representation for both $V_{\alpha a: \beta b}(i, j)$ and $O_{\alpha, a}$ implies
$\overline{O_{\alpha_{1}, a_{1}} O_{\alpha_{2}, a_{2}}^{\dagger}}=V_{o}^{2} \delta_{\alpha_{1}, \alpha_{2}} \delta_{a_{1}, a_{2}}$
O matrix is rectangular
$\overline{V_{\alpha a: \beta b}(i, j) V_{\lambda c: \mu d}\left(i^{\prime}, j^{\prime}\right)}=V_{H}^{2}(i, j) \delta_{i, i^{\prime}} \delta_{j, j^{\prime}} \delta_{\alpha, \mu} \delta_{\beta, \lambda} \delta_{a, d} \delta_{b, c}$
Unitary decomposition of \boldsymbol{H} w.r.t. $\boldsymbol{U}\left(\boldsymbol{N}_{\boldsymbol{I}}\right)+\boldsymbol{U}\left(\boldsymbol{N}_{2}\right)$ gives
$W_{i j}$ are independent Gaussian variables with zero center and variance $V_{H}^{2}(i, j)$
\hat{O} is $T^{f_{k_{0}}}$ w.r.t. $U\left(N_{1}\right)$ and $T^{\overline{k_{k_{0}}}}$ w.r.t. $U\left(N_{2}\right)$

$$
\overline{\left\langle O^{\dagger} O\right\rangle^{m_{1} m_{2}}}=V_{O}^{2}\binom{N_{1}-m_{1}}{k_{0}}\binom{m_{2}}{k_{0}}, \overline{\left\langle O O^{\dagger}\right\rangle^{m_{1} m_{2}}}=V_{O}^{2}\binom{N_{2}-m_{2}}{k_{0}}\binom{m_{1}}{k_{0}}
$$

$$
\overline{\left\langle\hat{H}^{2}\right\rangle^{m_{1} m_{2}}}=\sum_{i+j=k} V_{H}^{2}(i, j) \Lambda^{0}\left(N_{1}, m_{1}, i\right) \Lambda^{0}\left(N_{2}, m_{2}, j\right)
$$

gives M_{20} and M_{02}
$\overline{\left\langle O^{\dagger} O \hat{H}^{P}\right\rangle^{m_{1} m_{2}}}=\overline{\left\langle O^{\dagger} O\right\rangle^{m_{1} m_{2}}} \overline{\left\langle\hat{H}^{P}\right\rangle^{m_{1} m_{2}}}, \overline{\left\langle O^{\dagger} \hat{H}^{Q} O\right\rangle^{m_{1} m_{2}}}=\overline{\left\langle O^{\dagger} O\right\rangle^{m_{1} m_{2}}} \overline{\left\langle\hat{H}^{Q}\right\rangle^{m_{1}+k_{0}, m_{2}-k_{0}}}$
gives M_{40} and M_{04}

$$
\begin{aligned}
& \overline{\left\langle\hat{H}^{4}\right\rangle^{m_{1} m_{2}}}=2\left[\overline{\left\langle\hat{H}^{2}\right\rangle^{m_{1} m_{2}}}\right]^{2}+\sum_{i+j=k, r+l=k} V_{H}^{2}(i, j) V_{H}^{2}(r, l)(A)(B) \\
& A=\binom{N_{1}}{m_{1}}^{-1} \sum_{v_{1}=0}^{\min \left(i, m_{1}-r\right)} \Lambda^{v_{1}}\left(N_{1}, m_{1}, m_{1}-i\right) \Lambda^{v_{1}}\left(N_{1}, m_{1}, r\right) d\left(v_{1}\right)
\end{aligned}
$$

$B \leftrightarrow A$ with $1 \rightarrow 2$ and $(i, r) \rightarrow(j, l)$

$$
\Lambda^{v}(N, m, k)=\binom{m-v}{k}\binom{N-m+k-v}{k}
$$

The first non-trivial bivariate moment is $M_{1 I}$ and the formula for this is:

$$
\begin{aligned}
& M_{11}=V_{O}^{2}\left\{\binom{N_{1}}{m_{1}}\binom{N_{2}}{m_{2}}\right\}^{-1} \sum_{i+j=k} V_{H}^{2}(i, j)\binom{N_{1}-k_{0}}{m_{1}}\binom{N_{2}-k_{0}}{m_{2}-k_{0}} \\
& \times\left[\sum_{v_{1}=0}^{i} X_{11}\left(N_{1}, m_{1}, k_{0}, i, v_{1}\right)\right]\left[\sum_{v_{2}=0}^{j} Y_{11}\left(N_{2}, m_{2}, k_{0}, j, v_{2}\right)\right] ; \\
& X_{11}\left(N_{1}, m_{1}, k_{0}, i, v\right)=\left[\binom{N_{1}}{k_{0}} d\left(N_{1}: v\right)\right]^{1 / 2} \\
& \times\left[\Lambda^{v}\left(N_{1}, m_{1}, m_{1}-i\right) \Lambda^{v}\left(N_{1}, m_{1}+k_{0}, m_{1}+k_{0}-i\right)\right]^{1 / 2} \\
& \times(-1)^{\phi\left(f_{m_{1}+k_{0}}, \overline{f_{m},}, f_{k_{0}}\right)+\phi\left(f_{m_{1}}, \overline{\left.f_{m_{1}}, v\right)} U\left(f_{m_{1}+k_{0}}, \overline{f_{m_{1}}}, f_{m_{1}+k_{0}}, f_{m_{1}} ; f_{k_{0}}, v\right),\right.} \\
& Y_{11}\left(N_{2}, m_{2}, k_{0}, j, v\right)=X_{11}\left(N_{2}, m_{2}-k_{0}, k_{0}, j, v\right) . \\
& \text { note: } f_{r}=\left\{1^{r}\right\}, v=\left\{2^{v}, 1^{N-2 v}\right\} . U \text {-coefficient is w.r.t }
\end{aligned}
$$

$U\left(N_{1}\right)$ or $U\left(N_{2}\right)$ and formula for this was given by Hecht.

Formulas in terms of U-coefficients are also derived for $M_{04}, M_{40}, M_{13}, M_{31}, M_{22}$ and they in turn give formulas for all the fourth order cumulants.
asymptotic limit: $N_{i} \rightarrow \infty, m_{i} \rightarrow \infty, m_{i} / N_{i} \rightarrow 0$ and k and k_{0} fixed $M_{11} \rightarrow V_{O}^{2} \sum_{i+j=k} V_{H}^{2}(i, j)\binom{N_{1}-m_{1}-i}{k_{0}}\binom{m_{2}-j}{k_{0}}\binom{N_{1}}{i}\binom{m_{1}}{i}\binom{N_{2}}{j}\binom{m_{2}}{j}$

Similar asymptotic limit formulas are also derived for all the fourth order moments/cumulants.
bivariate correlation coefficient and fourth order cumulants for NDBD operator

$K_{0}=2$

Nuclei	N_{1}	m_{1}	N_{2}	m_{2}	k_{40}	k_{04}	k_{13}	k_{31}	k_{22}
${ }_{42}^{100}$ Mo58	30	2	32	8	$-0.45(-0.39)$	$-0.42(-0.38)$	$-0.24(-0.23)$	$-0.26(-0.25)$	$-0.20(-0.22)$
${ }^{150} \mathrm{Nd}_{90}$	32	10	44	8	$-0.27(-0.22)$	$-0.29(-0.23)$	$-0.22(-0.18)$	$-0.20(-0.17)$	$-0.19(-0.18)$
${ }^{2} 0$				0.72					

${ }_{62}^{154} \mathrm{Sm}_{92} 32124410-0.24(-0.18)-0.25(-0.18)-0.19(-0.15)-0.18(-0.15)-0.17(-0.15)$ 0.76
${ }_{74}^{180} W_{106} 32244424-0.19(-0.08)-0.20(-0.08)-0.17(-0.08)-0.15(-0.08)-0.15(-0.08) \quad 0.77$
${ }^{238} \mathrm{U}_{146} \quad 44 \quad 10 \quad 58 \quad 20-0.18(-0.13)-0.18(-0.13)-0.15(-0.11)-0.15(-0.11)-0.13(-0.11)$
Results for beta decay / EC (first four $\boldsymbol{\beta}^{-}$, next four EC, remaing two $\boldsymbol{\beta}^{+}$)

Nuclei	N_{1}	m_{1}	N_{2}	m_{2}	$\zeta_{\text {suve }}\left(m_{1}, m_{2}\right)$	k_{40}	k_{04}	k_{13}	k_{31}	k_{22}
${ }_{27}^{62} \mathrm{Co}_{35}$	20	7	30	15	0.72	$-0.26(-0.18)$	$-0.27(-0.18)$	$-0.24(-0.16)$	-0.23(-0.16)	-0.22(-0.16)
${ }_{27}^{64} \mathrm{CO}_{37}$	20	7	30	17	0.73	$-0.27(-0.16)$	$-0.27(-0.16)$	$-0.24(-0.15)$	$-0.23(-0.15)$	$-0.21(-0.15)$
${ }_{22}^{25} \mathrm{Fe}_{35}$	20	6	30	16	0.72	$-0.28(-0.18)$	$-0.28(-0.18)$	$-0.24(-0.16)$	$-0.24(-0.16)$	$-0.22(-0.16)$
${ }_{25}^{65} \mathrm{Ni}_{40}$	20	8	30	20	0.72	$-0.27(-0.14)$	$-0.27(-0.14)$	$-0.24(-0.13)$	$-0.23(-0.13)$	$-0.21(-0.13)$
${ }_{32}^{65} \mathrm{Ge}_{3} 3$	36	5	36	4	0.55	$-0.45(-0.41)$	$-0.46(-0.42)$	$-0.35(-0.33)$	$-0.34(-0.32)$	$-0.34(-0.34)$
${ }_{94} \mathrm{~T}^{\text {Se }}$ 35	36	7	36	6	0.66	$-0.36(-0.29)$	$-0.34(-0.30)$	$-0.28(-0.25)$	$-0.28(-0.25)$	$-0.27(-0.25)$
${ }_{33}^{73} \mathrm{~K}_{37}$	36	9	36	8	0.72	$-0.28(-0.23)$	$-0.28(-0.23)$	$-0.24(-0.20)$	$-0.24(-0.20)$	$-0.23(-0.20)$
${ }_{38}^{77} \mathrm{Sr}_{39}$	36	11	36	10	0.76	$-0.24(-0.19)$	$-0.24(-0.19)$	$-0.21(-0.17)$	$-0.21(-0.17)$	$-0.20(-0.17)$
${ }_{42}^{85} \mathrm{Mo}_{43}$	36	15	36	14	0.79	$-0.20(-0.14)$	$-0.21(-0.14)$	$-0.19(-0.13)$	$-0.18(-0.13)$	$-0.17(-0.13)$
${ }_{46}^{99} \mathrm{Pd}_{67}$	36	19	36	18	0.80	-0.19(-0.11)	$-0.19(-0.11)$	-0.18(-0.10)	$-0.17(-0.10)$	$-0.16(-0.10)$

Bivariate transition strength density is a bivariate Gaussian
NMP17, FRIB (Lansing), March 6-10,2017

$$
\begin{aligned}
& \rho_{b i v-\mathcal{G}: \mathcal{O}}\left(E_{i}, E_{f}\right)=\rho_{b i v-\mathcal{G}: \mathcal{O}}\left(E_{i}, E_{f} ; \varepsilon_{i}, \varepsilon_{f}, \sigma_{i}, \sigma_{f}, \zeta_{b i v}\right)=\frac{1}{2 \pi \sigma_{i} \sigma_{f} \sqrt{1-\zeta_{b i v}^{2}}} \\
& \times \exp -\frac{1}{2\left(1-\zeta_{b i v}^{2}\right)}\left\{\left(\frac{E_{i}-\varepsilon_{i}}{\sigma_{i}}\right)^{2}-2 \zeta_{b i v}\left(\frac{E_{i}-\varepsilon_{i}}{\sigma_{i}}\right)\left(\frac{E_{f}-\varepsilon_{f}}{\sigma_{f}}\right)+\left(\frac{E_{f}-\varepsilon_{f}}{\sigma_{f}}\right)^{2}\right\}
\end{aligned}
$$

$(1) \zeta=0$ implies GOE and for EGOE examples $\zeta \sim 0.6-0.9$
\therefore strength will be around $E_{i} \sim E_{f}$
(2) Expanding the bivariate Gaussian in terms of the product of the marginal Gaussian densities will give

$$
\rho_{b i v-G}(x, y)=\rho_{G}(x) \rho_{G}(y) \sum_{\mu} \zeta^{\mu} P_{\mu}(x) P_{\mu}(y)
$$

\therefore polynomial expansion of DFPW will not in general converge and this starts with GOE value
(3) EGUE results extend to EGOE
(4) In practice Edgeworth corrections to biv-Gaussian needed
(2s1d) Shell Model example :
${ }^{24} \mathrm{Mg}$ with $(J, T)=(0,0)$

Edgeworth corrected Gaussian with $O=V^{\imath=2}$

Manan Vyas \& VKBK
Eur. Phys. J. A 45, 111 (2010)

There are many other direct and indirect examples from nuclear shell model confirming bivariate Gaussian form for the transition strength densities

$$
\begin{aligned}
& \left.\mathcal{R}\left(E, E^{\prime}\right)=\left\{\langle E| \mathcal{O}^{\dagger} \mathcal{O}|E\rangle\right\}^{-1}\left|\left\langle E^{\prime}\right| \mathcal{O}\right| E\right\rangle\left.\right|^{2}, \\
& (\mathrm{NPC})_{E}=\left\{\sum_{E^{\prime}}\left\{\mathcal{R}\left(E, E^{\prime}\right)\right\}^{2}\right\}^{-1}, \\
& l_{H}(E)=\exp \left[\left(S^{i n f o}\right)_{E}\right] /\left(0.48 d^{\prime}\right) \\
& \left(S^{i f f o}\right)_{E}=-\sum_{E^{\prime}} \mathcal{R}\left(E, E^{\prime}\right) \ln \mathcal{R}\left(E, E^{\prime}\right) \text {. }
\end{aligned}
$$

EGOE formulas are derived using (i) bivariate Gaussian form for the transition strength densities
(ii) P-T for strength fluctuations

$$
\begin{array}{r}
{ }^{46} V: \\
J=0^{+}, T=0: d=814 \\
J=2^{+}, T=0: d=3683 \\
J=1^{+}, T=1: d=4105
\end{array}
$$

GKKMR, Phys. Rev. C 69 (2004) 057302; KS, Phys. Lett. B 429 (1998) 1

VKBK,Sahu, Chavda: PRE 73 (2006) 047203 $\operatorname{EGOE}(1+2)$ results for $m=6, N=12$ with O changing a particle from orbit 2 to orbit 9

With $\mathrm{H}=\mathrm{h}(\mathbf{1})+\lambda\{\mathrm{V}(2)\}$ and λ increasing, just as the situation with the strength functions, transition Strength densities change from biv-BW to biv-Gauss

chaos-therm \rightarrow biv-Gaussian

$\lambda=0.08$

An useful interpolating function is the biv- t distribution:

$$
\begin{aligned}
& \rho_{b i v-t: O}\left(E_{i}, E_{f} ; \varepsilon_{i}, \varepsilon_{f}, \sigma_{i}, \sigma_{f}, \zeta_{b i v} ; v\right)_{v \geq 1}=\frac{1}{2 \pi \sigma_{i} \sigma_{f} \sqrt{1-\zeta_{\text {biv }}^{2}}} \\
& \times\left[1+\frac{1}{v\left(1-\zeta_{\text {biv }}^{2}\right)}\left\{\left(\frac{E_{i}-\varepsilon_{i}}{\sigma_{i}}\right)^{2}-2 \zeta_{\text {biv }}\left(\frac{E_{i}-\varepsilon_{i}}{\sigma_{i}}\right)\left(\frac{E_{f}-\varepsilon_{f}}{\sigma_{f}}\right)+\left(\frac{E_{f}-\varepsilon_{f}}{\sigma_{f}}\right)^{2}\right\}\right]^{-(v+2) / 2}
\end{aligned}
$$

(i) v is the shape parameter
(ii) $v=1$ gives bivariate BW
(iii) $v \rightarrow \infty$ gives bivariate Gaussian
(iv) σ_{i} and σ_{f} are marginal widths only when $v \rightarrow \infty$ and they are spreading widths when $v=1$
(v) ζ remains the bivariate correlation coefficient

3. Extension to Transition Strengths With Partitioning

Nuclear Shell Model

Maria G Mayer

RochesterOak Ridge Code - 1966

NMP17, FRIB (Lansing), March 6-10,2017

In larger spectroscopic spaces instead of using a single bivariate Gaussian (or t-) distribution, it is more appropriate to partition the space (physically motivated one) and then apply EGOE result appropriately:

$$
\begin{gathered}
p \rightarrow\left(j_{1}^{p}, j_{2}^{p}, \ldots, j_{r}^{p}\right), \quad n \rightarrow\left(j_{1}^{n}, j_{2}^{n}, \ldots, j_{s}^{n}\right) \\
\tilde{m}_{p}=\left[m_{p}^{1}, m_{p}^{2}, \ldots, m_{p}^{r}\right], \quad \tilde{m}_{n}=\left[m_{n}^{1}, m_{n}^{2}, \ldots, m_{n}^{s}\right] \\
m_{p}=\sum_{i=1}^{r} m_{p}^{i}, m_{n}=\sum_{j=1}^{s} m_{n}^{j}
\end{gathered}
$$

$\widetilde{m}=\left(\widetilde{m_{p}}, \widetilde{m_{n}}\right)$ is a $p-n$ configuration \leftarrow mean-field $h(1)$ basis states

$$
E_{c}\left(\tilde{m}_{p}, \tilde{m}_{n}\right)=\langle H\rangle^{\left(\tilde{m}_{p}, \tilde{m}_{n}\right)}, \sigma^{2}\left(\tilde{m}_{p}, \tilde{m}_{n}\right)=\left\langle H^{2}\right\rangle^{\left(\tilde{m}_{p}, \tilde{m}_{n}\right)}-\left[E_{c}\left(\tilde{m}_{p}, \tilde{m}_{n}\right)\right]^{2}
$$

we need these with J - exact/approx - we will return to this later

To develop the ensemble theory for (smoothed) transition strength densities with $H=h(1)+V(2)$ and partitioning, we will start with $\mathrm{h}(1)=\sum_{r} \varepsilon_{r} n_{r}$,

$$
\begin{aligned}
& \left.I_{O}^{h(1)}\left(x_{i}, x_{f}\right)=\sum_{m_{i}, m_{f}} \sum_{\gamma_{i} \in m_{i}, \gamma_{f} \in \widetilde{m_{f}}}\left|\left\langle\widetilde{m_{f}}, \gamma_{f}\right| O\right| \widetilde{m_{i}}, \gamma_{i}\right\rangle\left.\right|^{2} \\
& \times \delta\left(x_{i}-\varepsilon\left(\widetilde{m_{i}}\right)\right) \delta\left(x_{f}-\varepsilon\left(\widetilde{m_{f}}\right) ; \varepsilon(\widetilde{m})=\sum_{i} m_{i} \varepsilon_{i}\right.
\end{aligned}
$$

The role of interactions ($\boldsymbol{V}(2)$) is to generate local spreadings of the bivariate density due to $\boldsymbol{h}(1)$

$$
\begin{aligned}
& \Rightarrow \rho_{O}^{H}=\rho_{O}^{h} \otimes \rho_{O}^{V} \text { and then, } \quad{ }_{\text {RMT-EE/chaos-therm ? }} \\
& I_{O}^{H=h+V}\left(E_{i}, E_{f}\right) \approx \int I_{O}^{h}(x, y) \rho_{O}^{V}\left(E_{i}-x, E_{f}-y\right) d x d y
\end{aligned}
$$

corrections to the convolution form? ignored (h, V, O)- cross correlations
$\mid\left\langle E_{f}\right| \mathcal{O}\left|E_{i}\right|^{2}=$
$\sum_{\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{i},\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{f}} \frac{d\left[\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{i}\right] d\left[\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{f}\right]}{I^{\left(m_{p}, m_{n}\right)}\left(E_{i}\right) I^{\left(m_{p}, m_{n}\right)}\left(E_{f}\right)}$
$\times \overline{\left.\left|\left\langle\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{f}\right| \mathcal{O}\right|\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{i}\right\rangle\left.\right|^{2}}$
$\times \rho_{b i v-t: \mathcal{O}: V}^{\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{i},\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{f}}\left(E_{i}, E_{f} ; E_{c}^{i}, E_{c}^{f}, \sigma_{i}, \sigma_{f}, \zeta\right)$
$\Rightarrow E_{c}^{i}, E_{c}^{f}, \sigma_{i}, \sigma_{f}, \zeta$ using only some approximations

Example of a one-body transition operator : $\quad O=\sum_{\alpha, \beta} \varepsilon_{\alpha \beta} a_{\alpha}^{\dagger} a_{\beta}$

$$
\begin{aligned}
& d\left(\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{f}\right) \overline{\left.\left|\left\langle\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{f}\right| \mathcal{O}\right|\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{i}\right\rangle\left.\right|^{2}}=\left\langle\frac{n_{\beta}\left(N_{\alpha}-n_{\alpha}\right)}{N_{\beta}\left(N_{\alpha}-\delta_{\alpha \beta \beta}\right)}\right\rangle^{\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{i}}\left|\varepsilon_{\alpha \beta}\right|^{2} ; \\
& \left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{f}=\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{i} \times\left(1_{\alpha}^{\dagger} 1_{\beta}\right) ; E_{c}^{f}=E_{c}^{i}-\varepsilon_{\beta}+\varepsilon_{\alpha} \\
& \text { assume constancy of } \sigma_{1}, \sigma_{2}, \zeta, v \Rightarrow
\end{aligned}
$$

$$
\left.\left|\left\langle E_{f}\right| O\right| E_{i}\right\rangle\left.\right|^{2}=\sum_{\alpha, \beta}\left|\varepsilon_{\alpha \beta}\right|^{2}\left\langle n_{\beta}\left(1-n_{\alpha}\right)\right\rangle^{E_{i}} \overline{D\left(E_{f}\right)} \mathfrak{J} ;
$$

$$
\mathfrak{I}=\int_{-\infty}^{+\infty} \rho_{b i v-t: O}\left(E_{i}, E_{f} ; E_{c}^{i}, E_{c}^{f}=E_{c}^{i}-\varepsilon_{\beta}+\varepsilon_{\alpha}, \sigma_{1}, \sigma_{2}, \zeta ; v\right) d E_{c}^{i}
$$

$$
=\frac{\Gamma[v+1) / 2]}{\sqrt{\pi \Gamma(\nu / 2)}} \frac{1}{\sqrt{v\left(\sigma_{1}^{2}+\sigma_{2}^{2}-2 \zeta \sigma_{1} \sigma_{2}\right)}}\left[1+\frac{\Delta^{2}}{v\left(\sigma_{1}^{2}+\sigma_{2}^{2}-2 \zeta \sigma_{\sigma} \sigma_{2}\right)}\right]^{-\left(\frac{v+1}{2}\right)}, \Delta=E_{f}-E_{i}+\varepsilon_{\beta}-\varepsilon_{\alpha}
$$

with $v=1$ and $\zeta=0$ along with $\sigma_{1}^{2}+\sigma_{2}^{2}=\left[\left(\Gamma_{1}+\Gamma_{2}\right) / 2\right]^{2}$, the above will reduce to the theory given by V. V. Flambaum et al.; see for example Phys. Rev. A 58, 230 (1998).

For completing the statistical theory for systems such nuclei or atoms, we need J-projection of all the quantities as the eigenstates carry J quantum number. This is indeed complicated. A simple method is used in the example to be discussed next.

4. Neutrinoless double beta decay NTME for ${ }^{130} \mathbf{T e}$ and ${ }^{136} \mathrm{Xe}$

NDBD half life for gs-gs of an e-e nucleus to a final e-e nucleus

Kamland-Zen: PRL 110, 062502 (2013) EXO-200: PRL 109, 032505

GERDA-phase-I: PRL 111, 122503 (2013)
\} ${ }^{136} \mathrm{Xe}>3.4 \times 10^{25} \mathrm{yr}$

$$
{ }^{76} \mathrm{Ge}>3 \times 10^{25} \mathrm{yr}
$$

$$
\text { more recent from } \mathrm{K}-\mathrm{Z}:{ }^{136} \mathrm{Xe}>1.1 \times 10^{26} \mathrm{yr}
$$

For nuclei, there is good evidence that $\rho_{b i v v} \rho_{i: O}^{\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{1},\left(\tilde{n}_{p}, \tilde{m}_{n}\right)_{s}}$ is a bivariate Gaussian need to use following approximations from RMT-EGOE marginal centroids and variances:

$$
\begin{aligned}
& E_{c}^{i}=E_{c}^{O: H}\left(\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{i}\right) \approx\langle H\rangle^{\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{i}}, \\
& E_{c}^{f}=E_{c}^{O: H}\left(\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{f}\right) \approx\langle H\rangle^{\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{f}}, \\
& \sigma_{i}^{2}=\sigma_{O: H}^{2}\left(\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{i}\right) \approx\left\langle V^{2}\right\rangle^{\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{i}}, \\
& \sigma_{f}^{2}=\sigma_{O: H}^{2}\left(\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{f}\right) \approx\left\langle V^{2}\right\rangle^{\left(\tilde{m}_{p}, \tilde{m}_{n}\right)_{f}}
\end{aligned}
$$

Trace propagation formulas due to CFT will give configuration averages starting with the shell model inputs (i.e. spe and TBME)
complicated is the bivariate correlation coefficient:

$$
\zeta\left(m_{p}, m_{n}\right)=\frac{\left\langle O^{\dagger} V O V\right\rangle^{\left(m_{p}, m_{n}\right)}}{\sqrt{\left\langle O^{\dagger} V^{2} O\right\rangle^{\left(m_{p}, m_{n}\right)}\left\langle O^{\dagger} O V^{2}\right\rangle^{\left(m_{p}, m_{n}\right)}}}
$$

estimates/values 0.6 to 0.8 from RMT-EGOE

definition of ζ involving configurations not known yet

$$
\begin{aligned}
& \left.\left|\left\langle\left(\widetilde{m_{p}}, \widetilde{m_{n}}\right)_{f}\right| \mathcal{O}(2: 0 v)\right|\left(\widetilde{m_{p}}, \widetilde{m_{n}}\right)_{i}\right\rangle\left.\right|^{2} d\left[\left(\widetilde{m_{p}}, \widetilde{m_{n}}\right)_{f}\right] \\
& =\sum_{\alpha, \beta, \gamma, \delta} \frac{m_{n}^{i}(\alpha)\left[m_{n}^{i}(\beta)-\delta_{\alpha \beta}\right]\left[N_{p}(\gamma)-m_{p}^{i}(\gamma)\right]\left[N_{p}(\delta)-m_{p}^{i}(\delta)-\delta_{\gamma \delta}\right]}{N_{n}(\alpha)\left[N_{n}(\beta)-\delta_{\alpha \beta}\right] N_{p}(\gamma)\left[N_{p}(\delta)-\delta_{\gamma \delta}\right]} \\
& \times \sum_{J_{0}}\left[\mathcal{O}_{\gamma^{\circ} \delta^{p} \alpha^{n} \beta^{n}}^{J_{0}}(0 v)\right]^{2}\left(2 J_{0}+1\right), \\
& \left(\widetilde{m_{p}}, \widetilde{m_{n}}\right)_{f}=\left(\widetilde{m_{p}}, \widetilde{m_{n}}\right)_{i} \times\left(1_{\gamma^{n}}^{+} 1_{\delta^{p}}^{+} 1_{\alpha^{n}} 1_{\beta^{n}}\right)
\end{aligned}
$$

In reality we need $\left.\left|\left\langle E_{f}, J_{f}=0\right| O\right| E_{i}, J_{i}=0\right\rangle\left.\right|^{2}$
Therefore J-projection is needed

$$
\begin{aligned}
& \left.\left|\left\langle E_{f}, J_{f}=0\right| O\right| E_{i}, J_{i}=0\right\rangle\left.\right|^{2}=\left[I\left(E_{i}, J_{i}\right) I\left(E_{f}, J_{f}\right)\right]^{-1} \\
& \times\left\langle\left\langle O^{\dagger} \delta\left(H-E_{f}\right) \delta\left(J^{2}-J_{f}\left(J_{f}+1\right)\right) O \delta\left(H-E_{i}\right) \delta\left(J^{2}-J_{i}\left(J_{i}+1\right)\right)\right\rangle\right\rangle^{\left(m_{p}, m_{n}\right)_{i}} \\
& =\frac{I_{O}\left(E_{i}, E_{f}, J_{i}, J_{f}\right)}{I\left(E_{i}, J_{i}\right) I\left(E_{f}, J_{f}\right)}=\frac{\rho_{O}\left(J_{i}, J_{f}: E_{i}, E_{f}\right) I_{o}\left(E_{i}, E_{f}\right)}{\rho\left(J_{i}: E_{i}\right) I\left(E_{i}\right) \rho\left(J_{f}: E_{f}\right) I\left(E_{f}\right)} \\
& \approx \frac{I_{o}\left(E_{i}, E_{f}\right) \sqrt{C_{J_{i}}\left(E_{i}\right) C_{J_{f}}\left(E_{f}\right)}}{I\left(E_{i}\right) C_{J_{i}}\left(E_{i}\right) I\left(E_{f}\right) C_{J f}\left(E_{f}\right)} \quad \text { Note: } J_{i}=j_{f}=0
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\Rightarrow\left|\left\langle E_{f}, J_{f}=0\right| O\right| E_{i}, J_{i}=0\right\rangle\left.\right|^{2}=\frac{1}{\sqrt{C_{J_{i}=0}\left(E_{i}\right) C_{J_{f}=0}\left(E_{f}\right)}}\left|\left\langle E_{f}\right| O\right| E_{i}\right\rangle\left.\right|^{2} \\
& C_{J}(E) \sim \frac{\left(2 J_{r}+1\right)}{\sqrt{8 \pi} \sigma_{J}^{3}(E)} \exp -\frac{\left(2 J_{r}+1\right)^{2}}{8 \sigma_{J}^{2}(E)} \xrightarrow{J_{t}=0} \frac{1}{\sqrt{8 \pi} \sigma_{J}^{3}(E)}
\end{aligned}
$$

$\sigma_{J}(E)$ is spin cut-off factor: in the gs region it is ~3-6.
we have applied RMT-EE theory with partitioning by treating ζ and $\sigma_{J}(E)$ as free parameters

SDM for ${ }^{130} \mathrm{Te} \rightarrow{ }^{130} \mathrm{Xe}$ NDBD NTME: first results

(i) sp space, $\mathbf{s p}$ energies and effective interaction:
${ }^{0} g_{7 / 2},{ }^{1} d_{5 / 2},{ }^{1} d_{3 / 2},{ }^{2} s_{1 / 2},{ }^{0} h_{1 / 2}$ space and JJ55 as in SM
(ii) parameters in the transition operator:

Jastrow parameters $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=(1.1,0.68,1)$;
$R=1.2 A^{1 / 3} \mathrm{fm}, g_{A} / g_{V}=1$ (quenched); $b=1.003 \mathrm{~A}^{1 / 6} \mathrm{fm}, \bar{E}=1.12$
$A^{1 / 2} \mathbf{M e V}$
(iii) ζ and $\sigma_{J}=\sigma_{J}\left(\mathbf{E}_{\mathrm{i}}(\mathbf{g s})\right)=\sigma_{\mathrm{J}}\left(\mathbf{E}_{\mathbf{j}}(\mathbf{g s})\right)$ free parameters
(iv) no. of $\mathrm{TBME}=327$; no. of $\mathrm{SPE}=5$
(v) for ${ }^{130} \mathrm{Te},\left(E_{R}, J_{R}, N_{R}\right)=\left(1.633 \mathrm{MeV}, 4^{+}, 20\right)$, for ${ }^{130} \mathrm{Xe},\left(E_{R}, J_{R}, N_{R}\right)=\left(1.205 \mathrm{MeV}, 4^{+}, 20\right) \rightarrow$ for $g s$
(vi) + ve parity configurations for ${ }^{130} \mathrm{Te}$ and ${ }^{130} \mathrm{Xe}$ are 554 and 5848 respectively (vii) average width $\sim 1.64 \mathrm{MeV}$ with 9% fluctuation for ${ }^{130} \mathrm{Te}$ and 2.65 MeV with 6% fluctuation for ${ }^{130} \mathrm{Xe}$ (viii) ground state ~-3 σ from the lowest configuration centroid (ix) total strength $=2195$

data from Schiffer et al: PRC 87 (2013) 011302(R) PRC 93 (2016) 064312

$$
\left\langle n_{\alpha}^{p(n)}\right\rangle^{E}=\sum_{\left(\widetilde{m_{p}}, \widetilde{m_{n}}\right)} \frac{I_{G}^{\left(\widetilde{m_{p}}, \widetilde{m_{n}}\right)}(E)}{I^{\left(m_{p}, m_{n}\right)}(E)}\left\langle n_{\alpha}^{p(n)}\right\rangle^{\left(\widetilde{m_{p}}, \widetilde{m_{n}}\right)}
$$

with $\sigma_{J} \sim 4-5$ and $\zeta \sim 0.7-0.75$ will give $M^{0 v} \sim 1.1-1.9$

SDM for ${ }^{136} \mathrm{Xe} \rightarrow{ }^{136} \mathrm{Ba}$ NDBD NTME: first results

(i) no. of TBME = 327; no. of $S P E=5$ [same $S P E$ and TBME as used for ${ }^{130} \mathrm{Te}$ NTME calculations]
(ii) for ${ }^{136} \mathrm{Xe},\left(E_{R}, J_{R}, N_{R}\right)=\left(1.892 \mathrm{MeV}, 6^{+}, 28\right) \rightarrow$ for $g s$ for ${ }^{136} \mathrm{Ba},\left(E_{R}, J_{R}, N_{R}\right)=\left(2.141 \mathrm{MeV}, 0^{+}, 41\right) \rightarrow$ for $g s$
(iii) +ve parity configurations for ${ }^{136} \mathrm{Xe}$ and ${ }^{136} \mathrm{Ba}$ are 42 and 1354 respectively
(iv) average width $\sim 0.82 \mathrm{MeV}$ with $\mathbf{1 2 \%}$ fluctuation for ${ }^{136} \mathrm{Xe}$ and 2.05 MeV with 7% fluctuation for ${ }^{136} \mathrm{Ba}$
(v) ground state ~-3.6 to 4σ from the lowest configuration centroid (vi) total strength $=\mathbf{2 1 9 5}$

data from : PRC 94 (2016) 054314; PRC 93 (2016) 064312

with $\sigma_{J} \sim 4-5$ and $\zeta \sim 0.7-0.75$ will give $M^{0 v} \sim 1.5-2.5$

SDM \Rightarrow VKBK and R.U. Haq, arXiv:1608.08785; in preparation

5. Open Questions in RMT-EE Theory

Further studies using the present formulation:

-better J-projection - understand more about four variable distributions - we may have to use J_{Z} operator for initial and final spaces plus Edgeworth expansion in four variables

- J-projection by using exact fixed $-J$ averages: configuration centroids and variances possible (Senkov et al. codes) but formula for the rms matrix elements with fixed J need to be derived:

$$
\left|\left(\left(\widetilde{m}_{p}, \widetilde{m}_{n}\right)_{,} J_{f-0} \mid \mathcal{O}(2: 0 \nu)\left(\widetilde{m}_{p}, \widetilde{m}_{n}\right)_{i} J_{i=0}\right)\right|^{2}
$$

-better treatment of ζ by calculating it using the definition involving $\left\{O^{\dagger} V O V\right\rangle^{\left(m_{p}, m_{n}\right)}$ rather than using it as a free parameter -testing the formulation using a full shell model example

- estimate errors as the theory is applied in the ground state region
-study sum rules for transition strengths and this is possible

Extensions of the present formulation:
-corrections to the convolution form with terms involving products of h, V and O cross correlations

- extending the analytical EGUE(2) results to EGUE(2) with spin and numerical EGOE(1+2) results to EGOE(1+2)-s: these will establish the generality of the biv-G form with internal quantum numbers
\cdot a definition of ζ with partitioning (condition: $-1 \leq \zeta \leq+1$)?
-in larger spaces $m \rightarrow \Sigma \Gamma \oplus$ and then we neeed to define proper positive definite partial strength densities. In special situations this is possible as already discussed - they are due to FKPT, Flambaum, VKBK+(MV,NDC,RS).
-transition strengths with multi h ω excitations?

Issues with partitioning:

$$
\begin{aligned}
& \left.\left.\stackrel{(1)}{\left.\left|\left\langle E_{f}\right| O\right| E_{i}\right\rangle\left.\right|^{2}=\mid}\left|\sum_{\Gamma_{i}, \Gamma_{f}} C_{E_{f}}^{\Gamma_{f}} C_{E_{i}}^{\Gamma_{i}}\right|\left\langle\Gamma_{f}\right| O\left|\Gamma_{i}\right\rangle\left|\left.\right|^{2}=\sum_{\Gamma_{i}, \Gamma_{f}}\right| C_{E_{f}}^{\Gamma_{f}}\right|^{2}\left|C_{E_{i}}^{\Gamma_{i}}\right|^{2}\left|\left\langle\Gamma_{f}\right| O\right| \Gamma_{i}\right\rangle\left.\right|^{2} \\
& \left.+\sum_{\Gamma_{f}^{\prime} \neq \Gamma_{f}^{2}, \Gamma_{i}^{\prime} \neq \Gamma_{i}^{2},} C_{E_{f}}^{\Gamma_{f}^{\prime}} C_{E_{f}^{\prime}}^{\Gamma_{f}^{\prime}} C_{E_{i}}^{\Gamma_{i}^{\prime}} C_{E_{i}}^{\Gamma_{i}^{2}}\left\langle\Gamma_{f}^{1}\right| O\left|\Gamma_{i}^{1}\right\rangle\left\langle\Gamma_{f}^{2}\right| O\left|\Gamma_{i}^{2}\right\rangle \text { diagonal term: }\right\rangle_{=0}
\end{aligned}
$$

$$
\begin{align*}
& \left\langle\left\langle O^{\dagger} \delta\left(H-E_{f}\right) O\left(H-E_{i}\right)\right\rangle\right\rangle^{m_{i}}=I_{o}^{\left(m_{i}, m_{f}\right)}\left(E_{i}, E_{f}\right) \quad O\left|m_{i} \alpha\right\rangle=\sum_{\beta}\left|m_{f} \beta\right\rangle \tag{2}
\end{align*}
$$

$H^{\prime} s$ and O ' s will not in general preserve Γ and $[H, O]_{-} \neq 0$
$I_{o}^{\Gamma_{i}, \Gamma_{f}}\left(E_{i}, E_{f}\right)$ need not be +ve and ζ may not be within ± 1 (also other moments may not be proper moments plus we have a conditional density)

Thank you all

©(0)rurrurrurrra@

