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1. Introduction
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Finite (small) isolated many particle systems:  

Complex nuclei, atoms, molecules (also biological 

molecules), small devices of condensed matter 

and quantum optics on Nano- and micro-scale 

(ex: quantum dots, small metallic grains), cold 

atoms in optical lattices, ion traps, 

implementations of  quantum computers 

involving many interacting q-bits , ------

 (1) (2)

 

 

one body two body

H h V
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†

† †

,

(1) (2)

(1)  ; 

(2)

with  fermion (or bosons) in say  sp states 

Now,  will be  matrix in  particle spaces
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3

Single particle spectrum

1,2,4,7,11

N=14,m=5

d=2002

1
  or 

      

N N m

m m

    
   
   

Large scale diagonalization using nuclear shell model,  atomic 

structure calc, one dimensional interacting spins systems -------

all with fixed h and V showed clearly:

statistical regularities in spectral averages, due to 

quantum chaos coming into play,  with  increasing 

NMP17, FRIB (Lansing), March 6-10,2017
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Although used with increasing frequency 

in many branches of Physics, (classical) 

random matrix ensembles sometimes are 

too unspecific to account for important 

features of the physical system at hand. 

One important refinement which retains the 

basic stochastic  approach but allows for 

such features (to describe statistical 

properties) consists in the use of 

embedded ensembles

2/28/2017 NMP17, FRIB (Lansing), March 6-10,2017



Given m fermions in N sp states, we have in m-particle 

spaces embedded GOE of  one plus two-body 

interactions: EGOE(1+2)

1
2
3

Single particle spectrum

 is average spacing

 ˆˆ ˆ(1) (2)H h V 

ˆ ˆ(1)  ; i i i

i

h n 
fixed  (TBRIM)

random (TBRIM)

drawn from GOE (RIMM)

 

ˆ(2) a random interaction 

ˆ(2)  is GOE(1) in 2-particle space

V

V



EGOE(1+2)  (m,N,/)

(12,2) 66,   (16,2) 120

(12,6) 924,   (16,8) 12870

 

 

f f

f f

d d

d d
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for interacting  boson systems  we have BEGOE(1+2)

interaction strength in units of 

basis state

NMP17, FRIB (Lansing), March 6-10,2017
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EE’s generate Gaussian eigenvalue densities independent of ; 

convergence is asymptotic; for small  Poisson fluctuations 

As  increases strength functions change form from BW to 

Gaussian and with further increase there will be thermalization

with maximal wavefunction delocalization (within a energy shell!). 

Here with  t , the spreading produced by h(1) and V(2) will be 

equal and thus generate maximum mixing with strength functions 

Gaussian and fluctuations GOE.

Many-body chaos  thermalization  RMT-EE  complex nuclei 

In EE, just as in many realistic systems, the behavior of various 

observables continues to evolve ,even after NNSD is stabilized, with 

the strength () of the perturbation. Therefore, more generally, 

quantum chaos is defined in terms of the (chaotic) structure of 

eigenstates, rather than in terms of level statistics. [BISZ]

NMP17, FRIB (Lansing), March 6-10,2017
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K.K. Mon and J.B. French, Ann. Phys. (N.Y.) 95 (1975) 90

VKBK, Phys. Rep. 347 (2001) 223.

F. Borgonovi, F.M. Izrailev, L.F. Santos, and V.G.

Zelevinsky, Phys. Rep. 626 (2016) 1.

VKBK,  Embedded Random Matrix Ensembles in

Quantum Physics, Lecture Notes in Physics, Volume 884 

(Springer, Heidelberg, 2014).

In this talk we will describe the current status of  EE 

theory for transition strengths and one new application

Gaussian eigenvalue densities and Gaussian strength functions applied inconfiguration- J

spaces led to the interacting particle theory for nuclear level densities: Sen'kov and 

Zelevinsky, Phys. Rev. C  93, (2016) 064304 ; French et al, Can. J. Phys. 84 (2006) 677.

NMP17, FRIB (Lansing), March 6-10,2017
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2. RMT-EE for Transition Strengths
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Transition strength density

2

†

( , ) ( ) | |  ( )

                 ( ) ( )



  

O i f f f i i

f i

I E E I E E O E I E

O H E O H E 

It is a bivariate density (with other 

quantum numbers - multivariate)

What is the form of  ( , ) ?O i fI E E

(i) H is a EGOE/EGUE/EGSE

O is fixed : DFW/HBZ
} problems

(ii) H is a EGOE/EGUE/EGSE

O is another independent EGOE/EGUE/EGSE 

-- used first by FKPT       

#(ii) gives results consistent with numerical 

Embedded Ensemble/Nuclear Shell Model 

(Fl-KS-KM)

NMP17, FRIB (Lansing), March 6-10,2017
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  †What is the form of ,  = ( ) ( )  ?

Here we employ EGOE/EGUE/EGSE for both  and  operators

   H

O i f f i
E E O H E O H E

H O

†( , )  moments H Q P

O i f PQE E M O H OH  

/2 /2

20 0200

11

40 40 04 04 31 31

2

13 13 22 22

/ ;   

 is the bivariate correlation coefficient

fourth order cumulants (shape parameters) are:

3,  3,  3 ,  

3 ,  2



 

   

   

 
      

        



     

   

P Q

PQ PQPQ PQM M M M M M

k k k

k k 1
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O

t-body operator ; identical  spinless fermions

[H a k-body operator – U(N) algebra]

k0 number of particles addition or removal 

operator; identical spinless fermions [H a k-

body operator – U(N) algebra]

- decay or 0- decay type operators; 

involves two types of spinless fermions

[H(k)=H11+H22+H12 and U(N1)+U(N2) algebra]

I

II

III

Extensions to boson systems: some results are available

Second and fourth order moments from RMT-EE:  

H represented by EGUE(k)  

O represented by an independent EGUE

Results are

derived for:

VKBK and Manan Vyas, Ann. Phys. (N.Y.) 359 (2015) 252-289

NMP17, FRIB (Lansing), March 6-10,2017
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Independence of the EGUE’s representing the 

H and O operators implies that we are removing 

the H-O correlated part from the transition 

operator O.  It is well known* that        

determine the expectation values of O operator.

2,  and 
mm m

O OH OH

*Draayer, French and Wong, Ann. Phys. (N.Y.) 106 (1977)  472

VKBK, Ann. Phys. (N.Y.) 306 (2003) 58-77
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beta decay and neutrinoless double beta 

decay type transition operators  
Example:

0 0

† †

;

, , ,

†

0 0 0

;

( , ) ( ) ( ) ( ) ( )

 ; 2 for nuclei

ˆ ( ) ( )

= #1: #2 : ;   1(  decay),  2(NDBD)

ˆ ;

ˆ( , )

 a b i i j a j b

i j k a b

i j a i j b

d k k d

d

a b

V i j A f v A f v A f v A f v

f v f v f v f v i j

O O A f v A f v

O k O k d k

H

V i j H

   

 

 

 



 

 

 

  





  



Note that we have U(N1)+U(N2) symmetry for H. Given m1

particles in #1 and m2 in #2, the irreps are (m1,m2) and the action

of O changes (m1,m2) to (m1+k0 , m2 – k0) 

NMP17, FRIB (Lansing), March 6-10,2017
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1 1 2 2 1 2 1 2

: ,

† 2

, , , ,

2

: : , , , , , ,

GUE representation for both ( , ) and  implies 

 

( , ) ( , ) ( , ) 

a b a

a a O a a

a b c d H i i j j a d b c

V i j O

O O V

V i j V i j V i j

  

   

       

 

      



  

Unitary decomposition of H w.r.t. U(N1)+U(N2) gives

, , ,

ˆ ( , ; , ) ( , ) ( , )ij i j

i j k

H W B C
 

   

   

       


 

 

   
#1 #2

Wij are independent Gaussian variables with zero center and

variance  
2 ( , )HV i j

O matrix is rectangular

0 0

1 2
ˆ  is  w.r.t. ( )  and  w.r.t. ( ) k kf f

O T U N T U N

NMP17, FRIB (Lansing), March 6-10,2017
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1 2 1 2
1 1 2 2 2 1

0 0 0 0

1 2

1 2 1 2 1 2 1 0 2 01 2 1 2

† 2 † 2
 ,     

2 2 0 0

1 1 2 2

,
† † † †

  

ˆ ( , ) ( , , ) ( , , )

ˆ ˆ ˆ ˆ    ,  

        
       
       
       

 

 

 

  

 



m m m m
N m m N m m

O Ok k k k

m m

H

i j k

m m m m m m m k m km m m m
P P Q Q

O O V OO V

H V i j N m i N m j

O OH O O H O H O O O H

1 2 1 2

1

1 11

1

2

4 2 2 2

,

1

1 1 1 1 1 1

1

ˆ ˆ2 ( , ) ( , ) ( ) ( ) 

min( , )
( , , ) ( , , ) ( )

0

  1 2 and ( , ) ( , )

  




   

 
 
 
 

 
  

 


   



  


m m m m

H H

i j k r l k

N

m

H H V i j V r l A B

i m r
A N m m i N m r d

B A with i r j l

gives M20 and M02

gives M40 and M04

   , ,
   

   
  

   
 

m N m k
N m k

k k
NMP17, FRIB (Lansing), March 6-10,2017
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1 2

1

2 01 2 1 02 2

11

2 01 2 1

11 1 1 0 1 11 2 2 0 2

0 0

1/2

1

11 1 1 0 1

0

1

( , ) 

 ( , , , , ) ( , , , , )  ;

( , , , , ) ( : )

 ( ,

O H

i j k

ji

N kN N N k
M V V i j

m km m m

X N m k i Y N m k j

N
X N m k i d N

k

N m

 



 

 



 

 

         
        

       

   
    
   

  
   

  

 



 

   

1 0 1 0 1 1

1 0 1 1 0 1 0

1/2

1 1 1 1 0 1 0

( , , ) ( , , )

11 2 2 0 11 2 2 0 0

2

1

, ) ( , , )

 (-1)  ( , , , ; , ) ,

( , , , , ) ( , , , , ).

note: 1 ,  2 ,1 .  -coefficient is w.r.t 

( ) or 

m k m k m mf f f f f

m k m m k m k

r N

r

m i N m k m k i

U f f f f f

Y N m k j X N m k k j

f U

U N



  

 



 



 

 



      



 

 

2( ) and formula for this was given by Hecht.U N

The first non-trivial bivariate moment is M11 and  the formula for this is:
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0

1 1 2 1 1 2 22 2

11

0 0

asymptotic limit: ,  ,  / 0 and  and  fixed

( , )

i i i i

O H

i j k

N m m N k k

N m i m j N m N m
M V V i j

k k i i j j 
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 Formulas in terms of -coefficients are also derived for 

, , , ,  and they in turn give formulas

for all the fourth order cumulants.

U

M M M M M

Similar asymptotic limit formulas are also derived 

for all the fourth order moments/cumulants.





0.57

0.72

0.76

0.77

0.83

bivariate correlation coefficient and fourth order cumulants for NDBD operator

Results for  beta decay / EC (first four - , next four EC, remaing two + )      

Bivariate transition strength density is a bivariate Gaussian

EGOE but 

not GOE

K0=2

K0=1

2/28/2017
NMP17, FRIB (Lansing), March 6-10,2017
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: : 2

22

2

1
( , ) ( , ; , , , , )

2 1

1
exp 2

2(1 )

biv i f biv i f i f i f biv

i f biv

f f f fi i i i
biv

biv i i f f

E E E E

E EE E

      
  

  


    

  


          
                      

  

(1)=0 implies GOE and for EGOE examples  0.6-0.9

strength will be around 

(2) Expanding the bivariate Gaussian in terms of the product of 

the marginal Gaussian densities will give 

polynomial expansion of DFPW will not in general converge

and this starts with GOE value

(3) EGUE results extend to EGOE

(4) In practice Edgeworth corrections to biv-Gaussian needed 

( , ) ( ) ( ) ( ) ( )biv G G Gx y x y P x P y

 
     

i fE E
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24Mg: J=0,T=0

Manan Vyas & VKBK

Eur. Phys. J. A 45, 111 (2010)

(2s1d) Shell Model example :
24Mg with (J,T)=(0,0)

Edgeworth corrected Gaussian 

with O=V=2

There are many other direct and indirect 

examples from nuclear shell model 

confirming bivariate Gaussian form for 

the transition strength densities

NMP17, FRIB (Lansing), March 6-10,2017
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46V:  J=0+, T=0: d=814

J=2+, T=0: d=3683

J=1+, T=1: d=4105

GKKMR, Phys. Rev. C 69 (2004) 057302;

KS, Phys. Lett. B 429 (1998) 1

EGOE formulas are derived using

(i) bivariate Gaussian form for the 

transition strength densities

(ii) P-T for strength fluctuations

NMP17, FRIB (Lansing), March 6-10,2017
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EGOE(1+2)  results  for m=6, N=12 with O

changing a particle  from orbit 2 to orbit 9

VKBK,Sahu, Chavda: PRE 73 (2006) 047203

With H=h(1)+{V(2)} and 

 increasing, just as the 

situation with the strength 

functions, transition

Strength densities change 

from biv-BW to biv-Gauss

chaos-therm  biv-Gaussian

NMP17, FRIB (Lansing), March 6-10,2017
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: 1
2

2 /2
22

2

1
( , ; , , , , ; )

2 1

1
1 2

(1 )

biv t i f i f i f biv

i f biv

f f f fi i i i
biv

biv i i f f

E E

E EE E





      
  

  


     

 

 




                                    



(i)  is the shape parameter 

(ii) =1 gives bivariate BW

(iii)  gives bivariate Gaussian

(iv) i and f are marginal widths only when 

and they are spreading widths when =1

(v)  remains the bivariate correlation coefficient

An useful interpolating function is the biv-t distribution:

NMP17, FRIB (Lansing), March 6-10,2017
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3. Extension to Transition Strengths

With Partitioning

2/28/2017 NMP17, FRIB (Lansing), March 6-10,2017



Nuclear 

Shell Model 

Maria G Mayer

27

Rochester-

Oak Ridge

Code - 1966

2/28/2017

NuShellX

ANTOINE

NMP17, FRIB (Lansing), March 6-10,2017
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1 2 1 2[ , ,..., ],   [ , ,..., ]r s

p p p p n n n nm m m m m m m m  

1 2 1 2( , ,..., ),   ( , ,..., )p p p n n n

r sp j j j n j j j 

In larger spectroscopic spaces instead of using a single bivariate Gaussian 

(or t-) distribution,  it is more appropriate to partition the space 

(physically motivated one) and then apply EGOE result appropriately:

1 1

 ,  
r s

i j

p p n n

i j

m m m m
 

  

   ,  is a -  configuration mean-field (1) basis states p nm m m p n h

( , ) 2( , ) 2 2( , ) ,  ( , ) ( , )
p np n

m mm m

c p n p n c p nE m m H m m H E m m      

  
     

we need these with J – exact/approx – we will return to this later

( , ) ( , )

( , )

( ) ( )p n p n

p n

m m m mRMT EGOE

m m

I E I E 
 

 
Chaos-therm (nuclei)

NMP17, FRIB (Lansing), March 6-10,2017
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To develop the ensemble theory for (smoothed) transition strength densities 

with (1) (2) and partitioning, we will start with h(1)= ,   r r

r

H h V n

 
  

  

2
(1)

, ,

( , ) , ,

 ( ( )) ( ( ) ; ( )

i f i i f f

h

i f f f i i

m m m m

i i f f i i

i

I x x m O m

x m x m m m



 

 

     

 



   

 



( , ) ( , ) ( , )    
H h V h V

O i f O O i fI E E I x y E x E y dxdy

The role of interactions ( (2)) is to generate

local spreadings of the bivariate density due to (1)

V

h

 and then,H h V

O O O    

corrections to the convolution form? ignored (h,V,O)- cross correlations

RMT-EE/chaos-therm ?

NMP17, FRIB (Lansing), March 6-10,2017
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2

( , ) ( , )

( , ) ,( , )

2

( , ) ,( , )

: : 

  

( , ) ( , )

( ) ( )

  ( , )   ( , )

  ( , ; , , , , )

, , , ,  using only

   

  





      








   

   

   

   

p n p n

p n i p n f

p n i p n f

f i

p n i p n f

m m m m

m m m m i f

p n f p n i

m m m m i f

biv t V i f c c i f

i f

c c i f

E E

d m m d m m

I E I E

m m m m

E E E E

E E









 some approximations 

NMP17, FRIB (Lansing), March 6-10,2017



2/28/2017 31

Example of a one-body transition operator :
†

,

O a a  
 



 

 1
22

2 22 2
1 2 1 21 2 1 2

2 2

,

: 1 2

[( 1)/2] 1

/2 ( 2 )( 2 )

(1 ) ( )  ;

( , ; , , , , ; ) 

1 , 

iE

f i f

i f i i

biv t O i f c c c c

f i

E O E n n D E

E E E E E dE

E E


  

 

 



           



      

 









  

   

  

    

       
 





 

( , )2 2( )

( )

†

(( , ) ) ( , )   ( , ) ;

( , ) ( , ) 1 1 ;   

  

   

   



 






    

 

     

   

p n im m
n N n

p n f p n f p n i N N

f i

p n f p n i c c

d m m m m m m

m m m m E E



1 2assume constancy of , , ,      

with =1 and =0  along with                                        ,  the above will reduce to  

the theory given by V. V. Flambaum et al.; see for example Phys. Rev. A 58, 230 (1998).

2 2 2

1 2 1 2[( ) / 2]    

NMP17, FRIB (Lansing), March 6-10,2017
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For completing the  statistical theory 

for systems such nuclei or atoms, we 

need  J-projection  of all the quantities 

as the eigenstates carry J quantum 

number. This is indeed complicated. A 

simple method is used in the example to 

be discussed next. 

NMP17, FRIB (Lansing), March 6-10,2017
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4. Neutrinoless double beta decay 

NTME for 
130

Te and 
136

Xe

2/28/2017 NMP17, FRIB (Lansing), March 6-10,2017
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1
2

2
1 2

0 0 0(0 0 ) (0 )i f

e

m
T G M

m

  


  
 

     
 

NDBD half life for gs-gs of an e-e nucleus to a final e-e nucleus

Phase space factor
(atomic physics)

NTME
(nuclear physics)

Neutrino mass
(particle physics)

Kamland-Zen: PRL 110, 062502 (2013)
EXO-200: PRL 109, 032505

GERDA-phase-I: PRL 111, 122503 (2013)

} 136Xe  > 3.4 X 1025

76Ge  > 3 X 1025

yr

yr

more recent from K-Z : 136Xe  > 1.1 X 1026 yr
NMP17, FRIB (Lansing), March 6-10,2017
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( , ):

( , ):

( , )
2 2 2

:

( , )
2 2 2

:

marginal centroids and variances:

(( , ) ) ,  

(( , ) ) ,

(( , ) ) ,   

(( , ) )

p n i

p n f

p n i

p n f

m mi O H

c c p n i

m mf O H

c c p n f

m m

i O H p n i

m m

f O H p n f

E E m m H

E E m m H

m m V

m m V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

need to use following approximations from RMT-EGOE

Trace propagation 
formulas due to CFT 
will give  configuration 
averages starting with 
the shell model inputs
(i.e. spe and TBME) 

complicated is the bivariate correlation coefficient:
( , )

†

( , ) ( , )
† 2 † 2

( , )

p n

p n p n

m m

p n
m m m m

O VOV
m m

O V O O OV

 

estimates/values 
0.6 to 0.8
from RMT-EGOE

definition of  involving configurations not known yet

For nuclei, there is good evidence that                        is a bivariate Gaussian
( , ) ,( , )

: : 
p n i p n fm m m m

biv t V 
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0

0

2

, , ,

2

0

, 2 : 0 , ,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(0 ) 2 1 ,

, , 1 1 1 1

p p n n

p p n n

p n p n p n
f i f

i i i i

n n p p p p

n n p p

J

J

p n p n
f i

m m m m d m m

m m N m N m

N N N N

J

m m m m

 

     

   

   



       

     



 

 
  

             
      

  
 

 









2

, 0   , 0f f i iE J O E J In reality we need

Therefore J-projection is needed

NMP17, FRIB (Lansing), March 6-10,2017
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2 1

( , )
† 2 2

, 0   , 0   ( , ) ( , )

  ( ) ( ( 1))  ( ) ( ( 1))

( , , , ) ( , : , ) ( , )

( , ) ( , ) ( : ) ( ) ( : ) ( )

( , ) (

p n i

i

f f i i i i f f

m m

f f f i i i

O i f i f O i f i f O i f

i i f f i i i f f f

O i f J

E J O E J I E J I E J

O H E J J J O H E J J J

I E E J J J J E E I E E

I E J I E J J E I E J E I E

I E E C E

   



 



     

      

 


) ( )

( ) ( ) ( ) ( ) 

f

i

i J f

i J i f Jf f

C E

I E C E I E C E
Note: Ji= jf =0

2 2

0 0

2
0

23 3

1
, 0   , 0   

( ) ( )

(2 1) (2 1) 1
( ) ~  exp  -   

8 ( )8  ( ) 8  ( )

i f

r

r

f f i i f i

J i J f

Jr r

J

JJ J

E J O E J E O E
C E C E

J J
C E

EE E   

 



   

 


J(E) is spin cut-off factor : in the gs region it is ~ 3-6. 

we have applied RMT-EE theory with partitioning by 

treating  and J(E)  as free parameters

NMP17, FRIB (Lansing), March 6-10,2017



(i) sp space, sp energies and effective interaction: 

(ii) parameters in the transition operator: 

Jastrow parameters (1 , 2 , 3 ) = (1.1, 0.68, 1); 

R = 1.2 A1/3 fm,  gA /gV=1 (quenched);  b = 1.003 A1/6 fm,  Ē = 1.12 

A1/2 MeV

(iii)  and J = J(Ei(gs)) = J(Ej(gs)) free parameters 
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0 1 1 2 0

7/2 5/2 3/2 1/2 11/2, , , ,g d d s h space and JJ55 as in SM

SDM for 130Te 130Xe  NDBD NTME: first results

(iv) no. of TBME = 327; no. of  SPE = 5

(v) for 130Te, (ER , JR , NR)= (1.633 MeV, 4+ , 20), 

for 130Xe, (ER , JR , NR)= (1.205 MeV, 4+ , 20)   for gs

(vi) +ve parity configurations for 130Te and 130Xe are 554 and 5848 respectively

(vii) average width ~ 1.64 MeV with 9% fluctuation for 130Te and 2.65 MeV with 6%        

.       fluctuation for 130Xe

(viii) ground state ~ -3  from the lowest configuration centroid

(ix)    total strength = 2195

NMP17, FRIB (Lansing), March 6-10,2017
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data from Schiffer et al:

PRC 87 (2013) 011302(R)

PRC 93 (2016) 064312  
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with J ~ 4-5  and  ~ 0.7-0.75 will give  M0 ~ 1.1-1.9

NMP17, FRIB (Lansing), March 6-10,2017
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SDM for 136Xe 136Ba  NDBD NTME: first results

(i) no. of TBME = 327; no. of  SPE = 5 [same SPE and 

TBME as used for 130Te NTME calculations]

(ii) for 136Xe, (ER , JR , NR)= (1.892 MeV,6+,28)  for gs

for 136Ba, (ER , JR , NR)= (2.141 MeV,0+,41)   for gs

(iii) +ve parity configurations for 136Xe and 136Ba are 42   

and 1354 respectively

(iv) average width ~ 0.82 MeV with 12% fluctuation for 
136Xe and 2.05 MeV with 7% fluctuation for 136Ba

(v) ground state ~ -3.6 to 4  from the lowest 

configuration centroid

(vi)    total strength = 2195

NMP17, FRIB (Lansing), March 6-10,2017
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data from : PRC 94 (2016) 054314; PRC 93 (2016) 064312  

NMP17, FRIB (Lansing), March 6-10,2017
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with J ~ 4-5  and  ~ 0.7-0.75 will give  M0 ~ 1.5-2.5

NMP17, FRIB (Lansing), March 6-10,2017



2/28/2017 44

SDM   VKBK and R.U. Haq, arXiv:1608.08785; in preparation
H

o
ro

i
P

R
C

 9
3

 (2
0

1
6

) 0
2

4
3

0
8

SDM SDM
SDM

SDM

SDM

NMP17, FRIB (Lansing), March 6-10,2017
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5. Open Questions in RMT-EE Theory

2/28/2017 NMP17, FRIB (Lansing), March 6-10,2017
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better J-projection – understand more about four variable 

distributions – we may have to use JZ operator for initial and final 

spaces plus Edgeworth expansion in four variables  

J-projection by using exact fixed-J averages: configuration centroids 

and variances possible (Senkov et al. codes) but formula for the rms

matrix elements with fixed-J need  to be derived:

better treatment of  by calculating it using the definition involving                     

.                       rather than using it as a free parameter

testing the formulation using a full shell model example

estimate errors as the theory is applied in the ground state region

study sum rules for transition strengths and this is possible

 ,
† p nm m

O VOV

Further studies using the present formulation:

NMP17, FRIB (Lansing), March 6-10,2017

       
2

0 0, 2 : 0 ,p n f p n i
f i

m m J m m J 
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•corrections to the convolution form with terms involving 

products of h,V and O cross correlations

• extending the analytical EGUE(2) results to EGUE(2) with spin 

and numerical EGOE(1+2) results to EGOE(1+2)-s: these will 

establish the generality of the biv-G form with internal quantum 

numbers

• a definition of  with partitioning (condition: -1 +1)?

•in larger spaces m    and then we neeed to define

proper positive definite partial strength densities. In special 

situations this is possible as already discussed  - they are due to 

FKPT, Flambaum, VKBK+(MV,NDC,RS).

•transition strengths with multi h excitations?

Extensions of the present formulation:  

NMP17, FRIB (Lansing), March 6-10,2017
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Issues with partitioning:

diagonal term: =0

off-diagonal term: 0
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(also other moments may not be proper moments plus we have a conditional density)
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