

Precision Measurements of Fundamental Interactions in the DUNE Near Detector

Sanjib R. Mishra for the DUNE Collaboration ICHEP, August 3-10, 2016

Chicago

Goals of the DUNE Near-Detector (ND) Complex

(\mathcal{A}) Constrain the systematic uncertainties in the Oscillation Measurements/Searches

 \Rightarrow Neutrino Source: ν_{μ} , ν_{e} , anti- ν_{μ} , anti- ν_{e} in

"PMNS-Oscillation $\Rightarrow 0.5 \le E_{\nu} \le 10$ GeV" & "Control & New-Physics $\Rightarrow 10 \le E_{\nu} \le 20$ GeV" regions

- \Rightarrow Absolute Flux & Relative Flux (FD/ND) measured at the Near Detector
- \Rightarrow Asymmetries in ν .vs. anti- ν Interactions: E-Scale, Topologies, Xsec, Nuclear effect
- \Rightarrow Signal: e⁻, e⁺, μ^{-} , μ^{+} , NC, \cdots // Background: π^{0} , π^{-} , π^{+} , ν_{μ} -CC \cdots

(B) A generational advance in the Precision Neutrino Physics

- ⇒ Cross-sections (QE, Resonance, Coherent-Meson, DIS), Sum-Rules
- ⇒ Neutrino-Nucleus (Ar) interactions & Nucleon Structure
- ⇒ Electroweak and Isospin Physics

(*C*) Search for New Physics at Short baseline

- ⇒ Heavy neutrinos, including `Light Dark-Matter' search
- \Rightarrow Large $\Delta m^{**}2$ oscillation: Synergy with FNAL's SBN program

⇒ ...

.. for FD, talks by Elizabeth & Alex

1 ... Synergy

REQUIREMENTS FOR $\nu(\bar{\nu})$ SCATTERING PHYSICS

STATISTICS

- Limiting factor for old experiments;
- Need increase $|\times 10 \div \times 100|$ with respect to current/past experiments;
- Detector mass not critical at the LBNF due to the large fluxes;
- → Shit focus from Measurements to Precision Tests of fundamental interactions

Reduction of systematic uncertainties:

- Flux, energy & momentum scales, backgrounds, theoretical modeling etc.;
- Start to limit current *v*-scattering experiments;
- Need fine-grained detectors & **REDUNDANCY** through multiple measurements

 \implies A major physics program requires

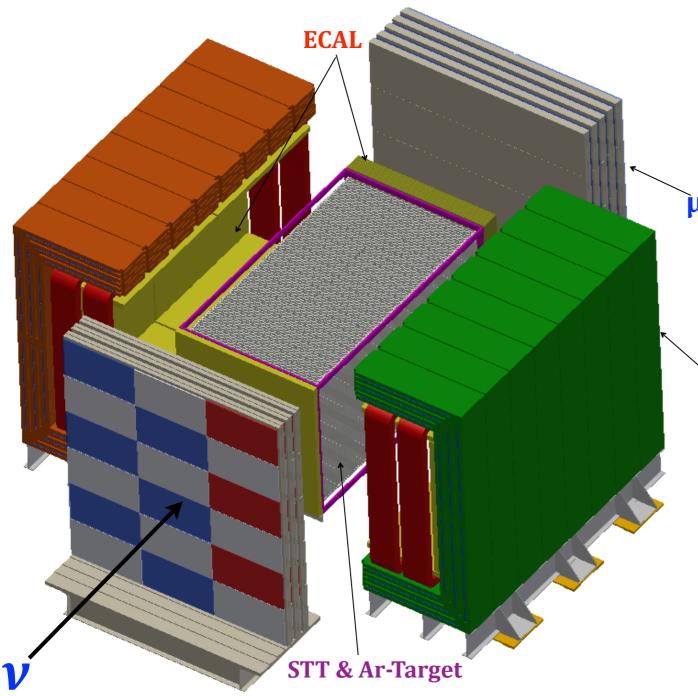
HIGH RESOLUTION

Quantifying the Neutrino Source

Precision measurement of ALL four species of Neutrinos in:

"*PMNS-Oscillation* $\Rightarrow 0.5 \le E_{\nu} \le 10$ GeV" & "Control & New-Physics $\Rightarrow 10 \le E_{\nu} \le 50$ GeV" regions

(No. Events in Nu-Mode for DUNE-ND—FGT)

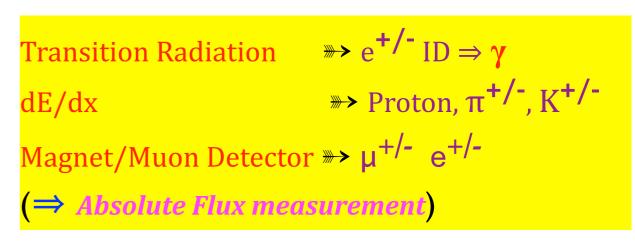

* $\nu_{\mu} \Rightarrow \mu^{-}$ as a function of E_{ν} (~50x10⁶ *Coents*) \Rightarrow FD/ND (E_{ν});

* $v_e \Rightarrow e^{-1}$ as a function of E_{ν} (~ $\delta x 10^{5}$ *Coents*) \Rightarrow FD/ND (E_{ν});

* anti- $\nu_{\mu} \Rightarrow \mu^{+}$ as a function of $E_{\nu} (\sim 5 \times 10^{6} \text{ Svents}) \Rightarrow FD/ND (E_{\nu});$

* anti- $V_e \Rightarrow e^+$ as a function of E_{ν} (~5x10⁴ Coents) \Rightarrow FD/ND (E_{ν});

 $\Rightarrow \phi \beta (E_{\nu}, E_{\nu is}) / \phi \alpha (E_{\nu}, E_{\nu is})$ for Neutrino and Anti-Neutrinos

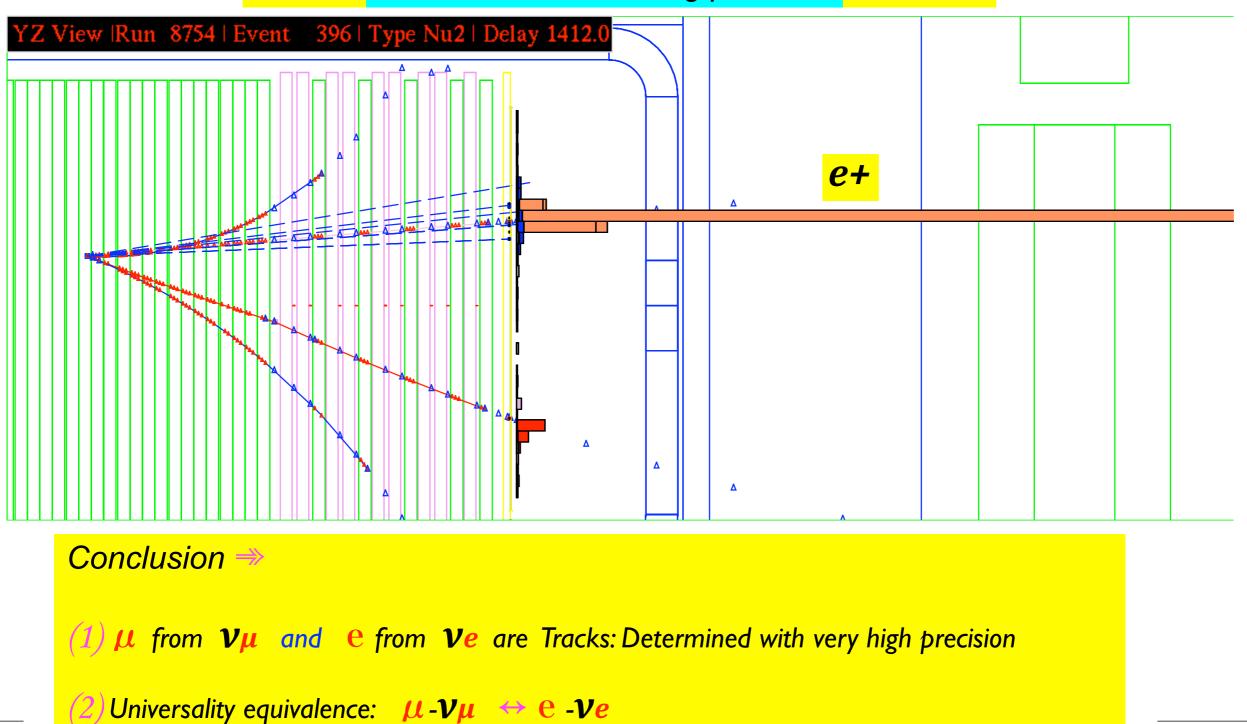


High-Resolution Fine Grain Tracker: Reference ND for *DUNE*

Options: (1) LAr, (2) HP-GAr

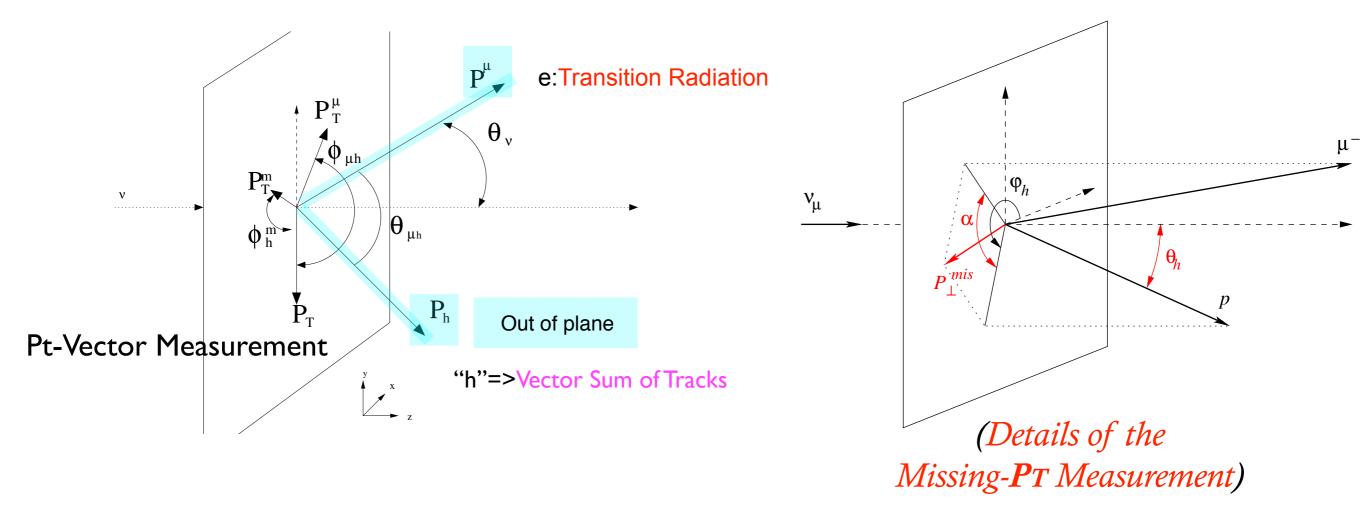
μ Detector

Dipole-B

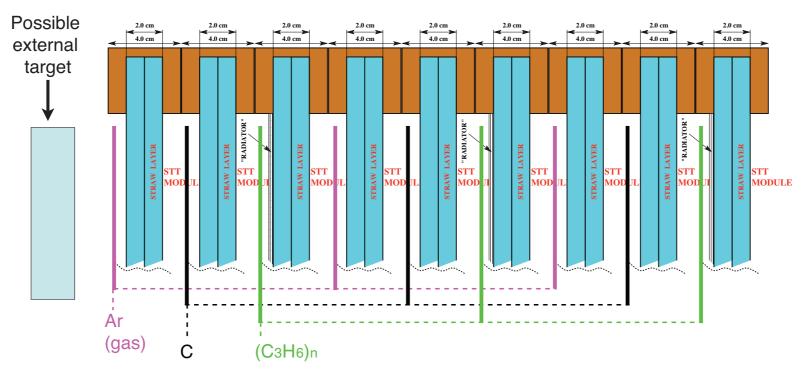


✓ 3.5m x 3.5m x 7m STT (ρ≃0.1gm/cm³)
✓ 4π-ECAL in a Dipole-B-Field (0.4T)
✓ 4π-μ-Detector (RPC) in Dipole and Downstream
✓ Pressurized Ar-target (≃x68 FD-Stat) ⇒ LAr-FD

...see FGT-talk by Bipul Bhuyan

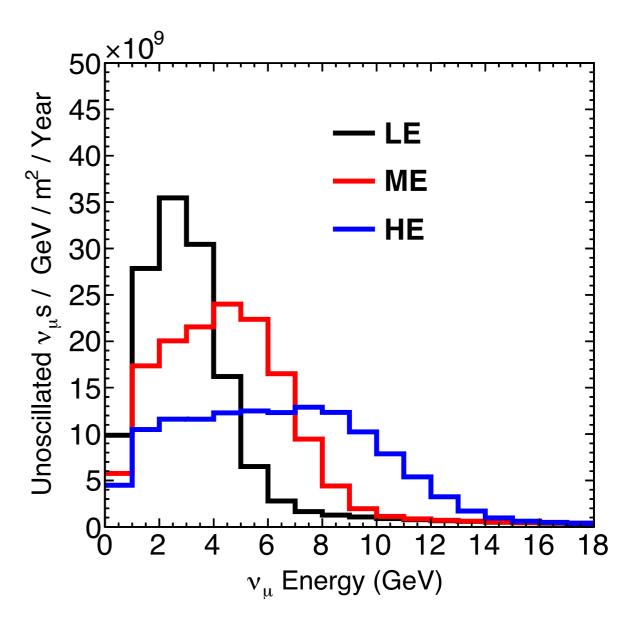

A $\bar{\nu}_e$ CC candidate in NOMAD

→ Most difficult to measure among the 4 v-species In FGT, ~x10 tracking points


Missing-PT Vector Measurement in CC Missing-PT an invaluable constraint on the Ev-scale

* Lepton & Hadron Momentum Vectors \implies Miss-PT

6


NUCLEAR TARGETS IN FGT

- Multiple nuclear targets in FGT: $(C_3H_6)_n$ radiators, C, Ar gas, Ca, Fe, etc. \implies Separation from excellent vertex ($\sim 100\mu m$) and angular (< 2 mrad) resolutions
- ◆ Subtraction of C TARGET from polypropylene $(C_3H_6)_n$ RADIATORS provides neutrino AND anti-neutrino interactions on free proton target \implies Absolute $\bar{\nu}_{\mu}$ flux from QE
 - \implies Model-independent measurement of nuclear effects and FSI from RATIOS A/H
- ◆ Pressurized Ar GAS target (~ 140 atm) inside C tubes and solid Ca TARGET (more compact & effective) provide detailed understanding of the FD A = 40 target ⇒ Collect more than x68 oscillated FD statistics on Ar target ⇒ Study of flavor dependence & isospin physics

BEAM AND EVENT RATES

- ♦ New high intensity (PIP-II) 1.2 MW proton beam at E = 120 GeV delivering 11 × 10²⁰ pot/year for 5 (v)+5(v̄) years
 ⇒ Upgradable to 2.4 MW
- Different energy tuning possible
- ★ At ND location expect to collect $90(40) \times 10^6 \nu_{\mu}(\bar{\nu}_{\mu})$ CC inclusive interactions

FLUX MEASUREMENTS

ABSOLUTE FLUXES

NC elastic scattering $\nu_{\mu} + e^- \rightarrow \nu_{\mu} + e^-$

 \implies Expect a $\sim 2\%$ precision in the absolute flux for $0.5 \leq E_{\nu} \leq 10$ GeV

CC Inverse Muon Decay $u_{\mu} + e^-
ightarrow
u_e + \mu$

 \implies Expect a $\sim 2.5\%$ precision in the absolute flux for $E_{\nu} \geq 11$ GeV

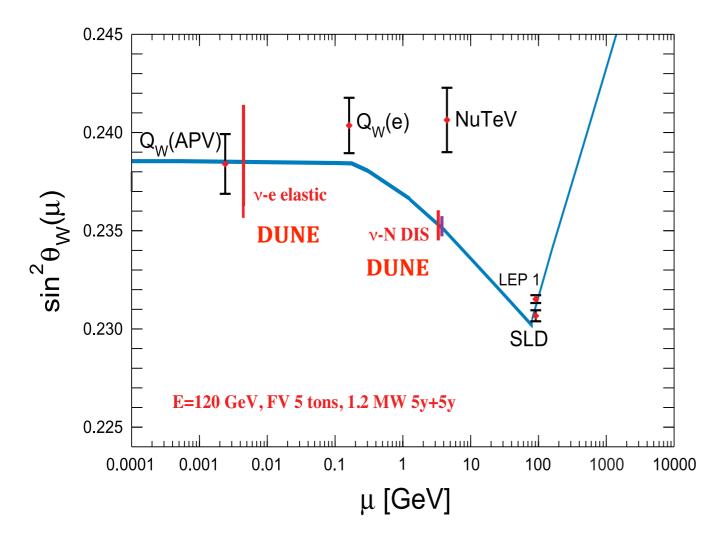
Using quasi-elastic CC scattering off free proton (hydrogen) target $\bar{\nu}_{\mu} + p \rightarrow \mu + n$ \implies Estimate a $\sim 3\%$ precision in the absolute flux for $0.5 \leq E_{\nu} \leq 20$ GeV

RELATIVE FLUXES

Use low- ν_0 method to extract parent meson distributions and predict FD/ND \implies Expect FD/ND to ~ 1-2% in fluxes vs. E_{ν} (bin-to-bin) for $0.5 \le E_{\nu} \le 20$ GeV Use coherent π^{\pm} production to determine $\bar{\nu}/\nu$ flux ratio \implies Expect ~ 1% precision on the flux ratio

→ Crucial ingredient for Exclusive (QE, Resonance, Coh-Meson, DIS,) Inclusive (CC & NC) differential cross-section measurements → structure-functions, in situ constraints on nuclear effects, QCD & EW tests

PRECISION TESTS OF THE ADLER SUM RULE


- ✦ High statistics event samples on H target from the subtraction between (C₃H₆)_n radiators and the C target allow high precision tests of the Adler sum rule
- ◆ The Adler integral provides the ISOSPIN of the target: $S_A = \int_0^1 \frac{dx}{2x} \left(F_2^{\bar{\nu}p} F_2^{\nu p} \right) = I_z$
 - Exact sum rule from current algebra;
 - At large Q^2 (quarks) sensitive to $(s \bar{s})$ asymmetry, isospin violations;
 - At low Q^2 cancellation QE, Res, DIS;
 - Only measurement from BEBC with 5,000 (9,000) $\nu(\bar{\nu})$ events on H (Z.Phys.C28 (1985) 321).
 - Expect $5.0(1.5) \times 10^6 \pm 13(6.6) \times 10^3 (sub.) \ \nu(\bar{\nu})$ CC interactions on free proton

 \implies A measurement on H at the percent level at LBNF could bring to discoveries!

♦ Interesting to measure the Adler sum rule in nuclei $S_A = (Z - N)/A$ like C, Ca and Ar to test possible isospin violations or flavor dependencies of nuclear effects

PRECISION ELECTROWEAK MEASUREMENTS

- Sensitivity from ν scattering in **DUNE/LBNF** comparable to the Collider precision:
 - FIRST single experiment to directly check the running of $\sin^2 \theta_W$: elastic ν -e scattering and νN DIS have different scales
 - <u>Different scale</u> of momentum transfer with respect to LEP/SLD (off Z^0 pole)
 - Direct measurement of neutrino couplings to Z^0
 - \implies Only other measurement LEP $\Gamma_{\nu\nu}$
 - Independent cross-check of the NuTeV $\sin^2 \theta_W$ anomaly (~ 3σ in ν data) in a similar Q^2 range

Different independent channels:

•
$$\mathcal{R}^{\nu} = \frac{\sigma_{\mathrm{NC}}^{\nu}}{\sigma_{\mathrm{CC}}^{\nu}}$$
 in ν -N DIS (~0.35%)

•
$$\mathcal{R}_{\nu e} = \frac{\sigma_{\mathrm{NC}}^{\bar{\nu}}}{\sigma_{\mathrm{NC}}^{\nu}}$$
 in ν -e⁻ NC elastic (~1%)

• NC/CC ratio
$$(\nu p \rightarrow \nu p)/(\nu n \rightarrow \mu^- p)$$

in (quasi)-elastic interactions

• NC/CC ratio ρ^0/ρ^+ in coherent processes

 \implies Combined EW fits like LEP

 Reduction of uncertainties to ~ 0.2% with 1-2 yr run in high energy mode

MEASUREMENT OF Δs

NC ELASTIC SCATTERING *neutrino-nucleus is sensitive to the strange quark* contribution to nucleon spin, Δs , through axial-vector form factor G_1 :

$$G_1 = \left[-\frac{G_A}{2}\tau_z + \frac{G_A^s}{2}\right]$$

At $Q^2 \to 0$ we have $d\sigma/dQ^2 \propto G_1^2$ and the strange axial form factor $G_A^s \to \Delta s$.

• Measure NC/CC RATIOS as a function of Q^2 to reduce systematics ($\sin^2 \theta_W$ as well):

$$R_{\nu} = \frac{\sigma(\nu p \to \nu p)}{\sigma(\nu n \to \mu^{-} p)}; \qquad R_{\bar{\nu}} = \frac{\sigma(\bar{\nu} p \to \bar{\nu} p)}{\sigma(\bar{\nu} p \to \mu^{+} n)}$$

- Statistical precison in **DUNE/LBNF ND** will be at the ~10⁻³ $\Rightarrow \sim 2.0 (1.2) \times 10^6 \nu (\bar{\nu})$ NC events (best measurement BNL E734 with 951 (776) $\nu(\bar{\nu})$ NC events, PRD 35 (1987) 785);
- A precision measurement over an extended Q^2 range reduces systematic uncertainties from the Q^2 dependence of vector $(F_{1,2}^s)$ and axial (G_A^s) strange form factors;
- Need to check background subtraction (e.g. neutrons etc.);

Role of Near-Detector in LBNF/DUNE: An Outlook

The ND-complex, with a high-resolution Fine-Grained Tracker (FGT), will:

(/) Quantify the Neutrino Source:

- \Rightarrow Neutrino Source: Neutrino Source: ν_{μ} , ν_{e} , *anti*- ν_{μ} , *anti*- ν_{e}
- ⇒ Neutrino and Antineutrino Energy-Scale
- \Rightarrow Relative flux: energy-to-energy, Anti- ν/ν , ν_e/ν_μ

in "*PMNS-Oscillation* $\Rightarrow 0.5 \le E_{\nu} \le 10$ GeV" & "Control & New-Physics $\Rightarrow 10 \le E_{\nu} \le 50$ GeV" regions

(2) measure Cross-section and topologies

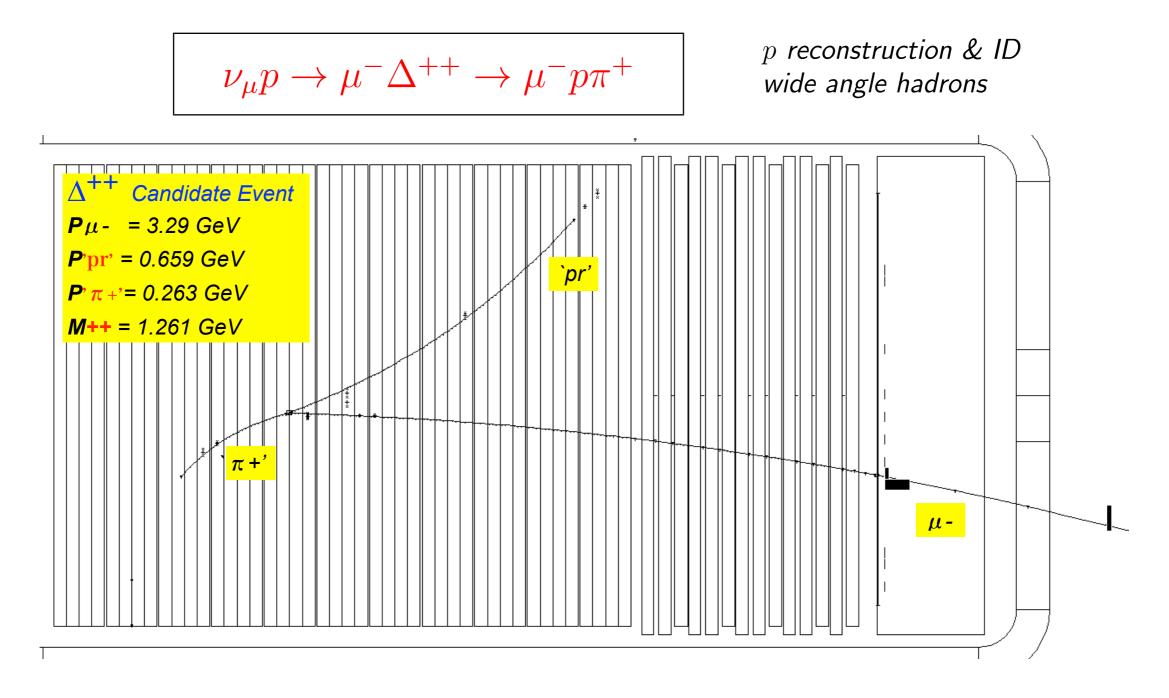
 \Rightarrow 4-vectors of secondary hadrons in NC .vs. CC, ν .vs. Anti- ν

(3) Neutrino-Nuclear Interactions: Measurement over a variety of targets to provide a quantitative modeling

(4) Additional LAr-detector will enhance the capability of ND-complex

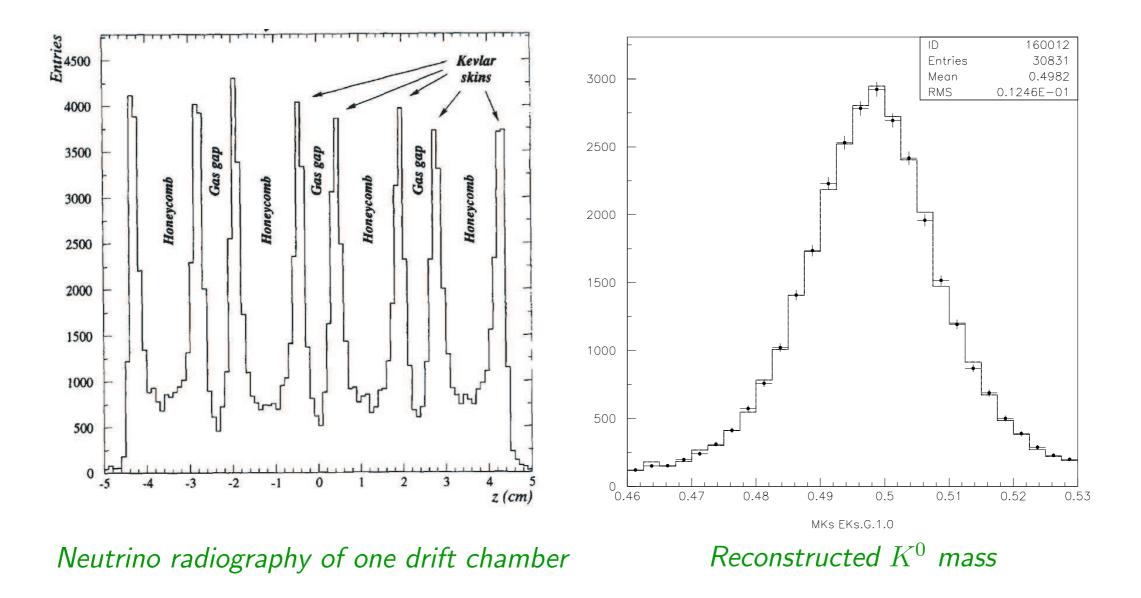
 \Rightarrow Conduct an Event-Generator Measurement, v-Spectra & 4-vectors, for ND

(*Finally*) A generational advance in Precision Measurement and Searches ...rich canvas of >120 topics providing a program commensurate with the collider experiments Backup


To precisely measure the neutrino-yield of e^{-}/e^{+} , need to have:

***** Magnetized tracker to ID Positive from Negative particle:

*****Low-Density medium to track electron/positron:


 \Rightarrow Momentum vectors of hadrons $\pi^{-}/\pi^{+}/\pi^{0}/\gamma$ / $\kappa^{0/+/-}$ & proton

* Large statistics ~ 10^8 v-Interactions

Event candidate from NOMAD data \implies STT has $\times 10$ granularity

VERTEX RESOLUTION AND ENERGY SCALES

 ♦ NOMAD: charged track momentum scale known to < 0.2% hardonic energy scale known to < 0.5%
 ♦ DUNE ND: ~ 100 × more statistics and 12 × higher segmentation

<u>MEASUREMENT STRATEGY FOR A = 40 IN FGT</u>

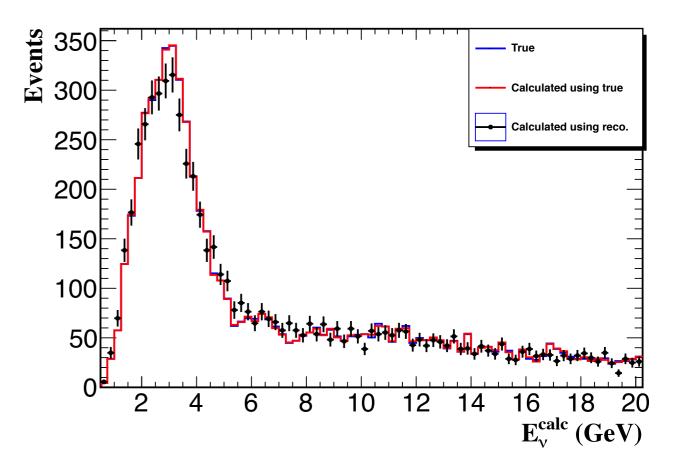
 Contrary to other technologies (LAr TPC, HP-Ar TPC) FGT relies on a dedicated suite of nuclear targets to characterize interactions on the FD target nucleus (Ar)

Disadvantages of FGT:

- Smaller Ar mass
- More complex analysis to measure nuclear effects

Advantages of FGT:

- Model-independent characterization of nuclear effects in the ${\cal A}=40$ nucleus
- Multiple nuclear targets for accurate modeling of nuclear effects
- Excellent γ and π^0 detection (e^{\pm} ID) improves reconstruction of hadronic component
- + In FD expect about 3,000 (9,200) ν_{μ} CC (un)oscillated events per year on Ar:
 - In FGT expect about 205,000 ν_{μ} CC events per year on Ar $\longrightarrow \times (22)68$ FD (un)oscillated
 - In FGT expect about 685,000 ν_{μ} CC events per year on Ca $\longrightarrow \times (74)228$ FD (un)oscillated
 - In FGT expect about 714,000 ν_{μ} CC events per year on C
 - In FGT expect about 857,000 u_{μ} CC events per year on H
 - In FGT expect about 9,304,000 u_{μ} CC events per year on $(C_{3}H_{6})_{n}$


- Direct model-independent measurement of nuclear effects in Ar from the ratio Ar/H with BOTH neutrino and anti-neutrino interactions
- Measurement of (anti)neutrino interactions in Ca (A = 40) and in-situ comparison of results with the corresponding measurements in pressurized Ar target
- Combine all FGT measurements from A = 40 nuclei (Ar and Ca ~ ×100 FD) and extrapolate results to predict FD event rates in LAr
 - ⇒ Addition of small LAr TPC in front of FGT would allow a further in-situ validation of FD predictions for LAr (+ rec. effects)
- Dedicated measurements of nuclear effects with the complete suite of nuclear targets (H, C₃H₆, C, Ar, Ca, Fe) in FGT to refine/validate nuclear modeling of interactions
 - Ratios of cross-sections and structure functions for exclusive and inclusive processes
 - Difference $\Delta E = E_{rec}^{\nu}(2 \ trk) E_{rec}^{QE}(1 \ trk)$ in Quasi-elastic topologies
 - Difference between QE cross-sections determined from 1 track and 2 track samples
 - Differences between the 2 and 3 track samples from Resonance production
 - Backward going pions and protons

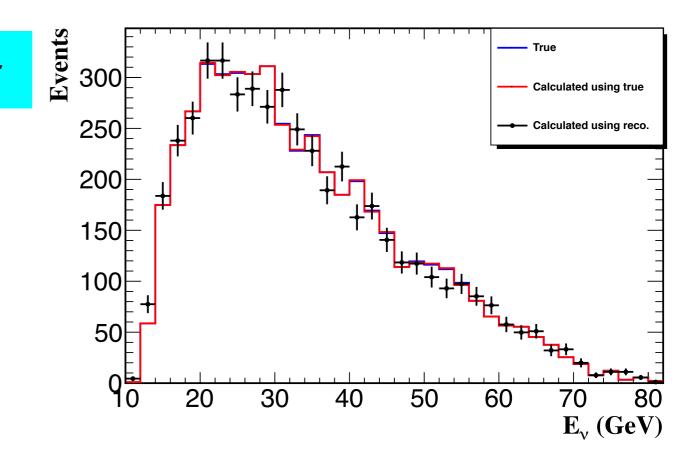
⇒ Systematic uncertainties on extrapolations/predictions of FD event rates in LAr

Absolute Flux Measurement

(1):V-Electron NC Scattering: $V_{\mu} + e \rightarrow V_{\mu} + e$

- * Signal Eff \Rightarrow 73% // Background \Rightarrow Benign; in situ constraints
- Neutrino Energy
 High-resolution tracker allows thee
 reconstruction of Εν from (Ee, θe)
- * Absolute Flux $\Rightarrow \sim 2\%$ precision in $0.5 \le E_{\nu} \le 10$ GeV range

(2): \mathcal{V} -Electron CC Scattering: $\mathcal{V}_{\mu} + \mathbf{e} \rightarrow \mathcal{V}_{\mu} + \mu^{-}$


* Signal Eff \Rightarrow 82% // Background \Rightarrow 20%;

constrained by 2-Track V_{μ} -CC analysis

* Neutrino Energy

High-resolution tracker allows thee reconstruction of $E\nu$ from $(E\mu, \theta\mu)$

* Absolute Flux $\Rightarrow \sim 2.5\%$ precision in $15 \leq E_{\nu} \leq 50$ GeV range

Source of uncertainty	$\delta R^{ u}/R^{ u}$		Comments
	NuTeV	DUNE	
Data statistics	0.00176	0.00074	
Monte Carlo statistics	0.00015		
Total Statistics	0.00176	0.00074	
$ u_e, \overline{ u}_e ext{ flux } (\sim 1.7\%)$	0.00064	0.00010	e^{-}/e^{+} identification
Energy measurement	0.00038	0.00040	
Shower length model	0.00054	n.a.	
Counter efficiency, noise	0.00036	n.a.	
Interaction vertex	0.00056	n.a.	
$\overline{ u}_{\mu}$ flux	n.a.	0.00070	Large $\bar{\nu}$ contamination
Kinematic selection	n.a.	0.00060	Kinematic identification of NO
Experimental systematics	0.00112	0.00102	
d,s→c, s-sea	0.00227	0.00140	Based on existing knowledge
Charm sea	0.00013	n.a.	
$r=\sigma^{\overline{ u}}/\sigma^{ u}$	0.00018	n.a.	
Radiative corrections	0.00013	0.00013	
Non-isoscalar target	0.00010	N.A.	
Higher twists	0.00031	0.00070	Lower Q^2 values
$R_L\left(F_2,F_T,xF_3 ight)$	0.00115	0.00140	Lower Q^2 values
Nuclear correction		0.00020	
Model systematics	0.00258	0.00212	

TESTS OF ISOSPIN (CHARGE) SYMMETRY

◆ Experimental check of isospin symmetry in nucleon, $u_{p(n)} \neq d_{n(p)}$. Fine grained ND in DUNE/LBNF with ν AND $\bar{\nu}$ on isoscalar C TARGET: $\frac{F_2^{\nu C}}{F_2^{\bar{\nu}C}}(x,Q^2) - 1$

- Structure function ratio reduces systematic uncertainties;
- Need to take into account charm quark effects $\propto \sin^2 \theta_C$. Sensitivity to $\boxed{m_c}$;
- A non-vanishing strange sea asymmetry $s(x) \overline{s}(x)$ would affect the result. Need combined analysis with charm production in ν and $\overline{\nu}$ interactions;
- Potential effect of nuclear environment e.g. with Coulomb field.
- Collect ν and $\overline{\nu}$ interactions on both Ca AND Ar TARGETS to disentangle nuclear effects from isospin effects in nucleon structure functions.
 - Measure ratios $F_2^{\nu A}/F_2^{\bar{\nu}A}(x,Q^2)$;
 - Use heavier isoscalar target, ${}^{40}_{20}$ Ca, to verify nuclear effects in ${}^{12}_{6}$ C;
 - Use second target with isovector component but same A as Ca: $^{40}_{18}$ Ar.