High Resolution Fine-Grained Tracker: Reference Near Detector for DUNE

Bipul Bhuyan Indian Institute of Technology Guwahati

38th International Conference on High Energy Physics (ICHEP2016), Chicago

August 3-10, 2016

Deep Underground Neutrino Experiment

A strong International collaboration of about 882 physicists from more than 152 institutions in 28 countries

- ✓ Measure v_e appearance and v_μ disappearance in a wideband neutrino beam at 1300 km to measure Mass Hierarchy, CP violation and precision measurements of neutrino mixing parameters in a single experiment.
 - A large LArTPC far detector located deep underground.

 An advanced near detector for precision measurements of neutrino flux and neutrino interactions with matter.

See Elizabeth Worcester's talk Joint Neutrino Physics & Detector R & D session August 5: 11 am - 1 pm

Near Detector Physics Motivation

♦ Determination of the relative abundance and energy spectrum of the four V species in LBNF beam: v_{μ} , \bar{v}_{μ} , v_e , and \bar{v}_e CC-interactions.

 \Rightarrow Prediction of FD/ND(E_{v}) fluxes to ~ 1%

- $\diamond\,$ Determination of the absolute \mathcal{V}_{μ} and $\overline{\mathcal{V}}_{\mu}$ fluxes to ~ 3%
- ♦ Measure cross-sections and exclusive topologies of NC and CC interactions
 - \diamond Event by event NC/CC separation as a function of hadronic energy E_{had}
 - \diamond Measurement of π^{0} and γ yields in both NC and CC to better than 5%
 - \diamond Measurement of π^{\pm} / K^{\pm} in CC and NC to constrain π^{\pm} / $K^{\pm} \rightarrow \mu^{\pm}$ decays.

 \diamond Measure exclusive and semi-exclusive NC and CC $\nu - Ar$ processes: Quasi-elastic, single π , Deep Inelastic Scattering (DIS) and coherent pion production.

♦ Backgrounds to appearance and disappearance channels.

- ♦ Calibration of the absolute energy scale in v Ar and $\overline{v} Ar$ interactions.
- \diamond Quantify ν vs $\overline{\nu}$ asymmetries in E_{ν} scale, flux and interactions cross-sections for δ_{CP}

See Sanjib Mishra's talk Joint Neutrino Physics & Detector R & D session August 5: 11 am - 1 pm

DUNE Near Detector Concept

- CDR reference design. Four components detector:
- An active low density (0.1 g/cm³) straw tube tracker (STT) in a 0.4 T magnetic field with embedded high pressure argon gas targets.
 - Tunable thin target(s) spread over entire tracking volume Target mass ~ 7 ton
 - Combined particle –ID and tracking for precise reconstruction and 4-momenta
 - dE/dx : Proton ID, π^{\pm}, K^{\pm}
 - Transition Radiation: e⁻/e⁺ ID, γ
- \diamond 4 π lead-plastic scintillator ECAL in dipole B field
 - ♦ Transverse and longitudinal segmentation.
 - ♦ Energy resolution: 6%/ \sqrt{E} for downstream ECAL; Time resolution: 1 ns for E > 100 MeV
- $\diamond~$ 4 π RPC based muon detector
 - μ^{+} / μ^{-} identification.

LBNF: Large statistics ~ $10^8 V$ Interactions in $5 \oplus 5$ yrs

Straw Tube Tracker (STT)

♦ Proven Technology: Improve on NOMAD low density spectrometer

- Small cylindrical drift tubes insensitive to track angles
- More sampling points along the track: x 6 perpendicular to beam axis and x2 along the beam axis.
 - Efficient proton reconstruction down to 250 MeV/c, dE/dX and Transition Radiation for particle identification.
 Proton and e identification with little background.

♦ STT design parameters:

- Straw inner diameter: 9.530 ±0.005 mm

- Straw walls $70 \pm 5\mu m$ Kapton 160XC370/100HN ($\rho = 1.42, X_0 = 28.6cm$, each straw < $5 \times 10^{-4} X_0$)

- Gold plated tungsten wire: $20 \mu m$ diameter; wire tension around 50 g.
- Straws are arranged in double layers of 336 straws glued together (epoxy glue) inserted in C-fiber composite frames.
- Double module assembly (XX+YY) with FE electronic (each XX+YY tracking module $\sim 2 \times 10^{-3} X_0$)
- Operate with 70%/30% Ar/CO₂ gas mixture
- Readout at both ends of straws (IO and FE boards on all sides of each XX + YY STT module)
- 160 modules arranged into 80 double modules over ~ 6.4 m (total 107,520 straws)

Total tracking length ~ $1.3X_0$ Vertex Resolution: 0.1 mm Angular Resolution: 2 mrad

STT: Radiator Targets

- ♦ STT design parameters:
 - Main $v(\overline{v})$ target in the form of multiple thin polypropylene foils (radiators)
 - Use target material for particle identification via Transition Radiation (TR)
- Radiator target integrated at both sides of each STT (double layer) module to minimize overall thickness (foils can be removed if needed)
 - Embossed radiator foils: 25 μm thick, 125 μm air gaps;
 - Total number of radiator foils: 240 per XXYY module, arranged into 4 radiators composed of 60 foils each;
 - Total radiator mass in each XXYY module: 69.1 kg, $1.25 \times 10^{-2} X_0$
 - The radiator represents 82.6% of the total mass of each STT module
 - Tunable for desired statistics and momentum resolution

The Electromagnetic Calorimeter

- Reconstruction of e⁺/e⁻, γ with accuracy comparable to μ^+ / μ^- and FD
 - Containment of > 90% of shower energy; energy resolution $< 6\% / \sqrt{E}$
- Sampling electromagnetic calorimeter with Pb absorbers and alternating horizontal and \diamond vertical (XYXYXY...) 3.2 m x 2.5 cm x 1 cm plastic scintillator bars readout at both ends by 1 mm diameter extruded WLS fibers and SiPMs.
 - Downstream ECAL: 60 layers with 1.75 mm Pb plates. 20 X_0 .
 - Barrel ECAL: Will surround the sides of the STT. 18 layers with 3.5 mm of Pb. 10 X₀

- Upstream ECAL: 18 layers with 3.5 mm Pb.10 X₀.

(64 Channel)

The Dipole Magnet

Dipole Magnet Simulation

♦ B uniformity in 3.5 m x 3.5 m x 7 m tracking volume is better than 2% (field simulations)

The Muon Detector

Readout Electronics

- Near Detector should cater pulse structure of the beam (~ 9.6 µs spill) and provide GPS time stamp to identify origin and nature of events.
- ♦ Fast readout electronics for STT, ECAL and muon detector (rise time a few ns) with time stamping (resolution ~ 1 ns) and charge measurements.
 - ♦ STT and ECAL: total charge and time associated with a given hit, in-sync with beam spill triggers.
 - ♦ MuID RPCs: provide the position and time associated with a traversing track.
 - ♦ In STT, desirable waveforms are digitized to enhance the capability to detect transition radiation.
- Expected rates per spill are ~0.2 events/ton: 1.5 events in STT, 22 events in ECAL, 222 in magnet/coil, 57(34) events in downstream (upstream) steel planes.
 - ♦ Negligible pile-up due to size ~ 160 m³ and timing resolution ~ 1 ns
- ♦ STT, ECAL and the backward RPC can define various triggers
 - ♦ Hits stored in pipelines for a later decision
- For STT FE , consider VMM2 chip (ASICS) developed for ATLAS upgrades, with fast ADC and TDC
- For ECAL FE consider options: TRIP-T, SPIROC by OMEGA

Detector	# of Channels
STT	215,040
ECAL	52,224
MuID	165,888

FGT Detector Performance

	Expectation		
Value		Res.	
Muon p		3.5%	
Electron p		12%	
Pic	n p		7.5%
Proton p		5.5%	
ECAL E		6%/√E	
Muon angle		1 mrad	
Electron angle		2 mrad	
Charge Separation		~100%	
Spatial (radial)		<200µm	
Vertex (2+ trk)		within 100µm	

PID Performance

Detector Performance-ECAL Energy Resolution

Detector Performance- Linear Energy Response

Detector Performance- Energy Resolution in the Full ECAL

Summary

♦ FGT design is based upon successful experience of NOMAD and T2K: proven technologies.

- STT design is based on ATLAS and COMPASS straw trackers.
- ECAL design after T2K ND280 EM calorimeter
- Magnet design following the UA1/NOMAD/T2K dipole magnet.

♦ The reference FGT conceptual and mechanical design matches the global science requirement of the Near Detector for DUNE

- \diamond Very good charged particle tracking via the STT, good charged separation.
- ♦ Good momentum/energy resolution via STT/ECAL
- ♦ Good hadron discrimination, muon-ID via RPC based muon detectors
- ♦ Possibility of measuring neutral pions and their energies: important for controlling NC background.
- ♦ FGT provides redundancy in absolute flux measurements via
 - \diamond NC elastic scattering off electrons: $ve^- \rightarrow ve^-$
 - ♦ Inverse Muon Decay (IMD) interactions: $\nu_{\mu}e^{-} \rightarrow \mu^{-}\nu_{e}$
 - ♦ Quasi-elastic (QE) CC interactions in the limit $Q^2 \rightarrow 0 : v_\mu n \rightarrow \mu^- p$

