

# **Design of the LBNF Beamline**

Vaia Papadimitriou (for LBNF/DUNE) LBNF Beamline Manager Fermilab Accelerator Division Headquarters 38<sup>th</sup> International Conference on High Energy Physics August 3-10, 2016









## Outline

- LBNF/DUNE Science Goals
- The Fermilab Accelerator Complex
- Overview of the reference design of the LBNF Beamline
- Considered design upgrades
- LBNF/DUNE Milestones
- Conclusion

#### **Neutrino Program at Fermilab**



# **LBNF/DUNE Science Goals**

LBNF/DUNE is a comprehensive program to:

- Measure neutrino oscillations
  - Direct determination of CP violation in the leptonic sector
  - Measurement of the CP phase  $\delta$
  - Determination of the neutrino mass hierarchy
  - Determination of the  $\theta_{23}$  octant and other precision measurements
  - Testing the 3-flavor mixing paradigm
  - Precision measurements of neutrino interactions with matter
  - Searching for new physics

Start data taking ~ 2026

 $|\Delta m_{22}^2|$ 

- Study other fundamental physics enabled by a massive, underground detector
  - Search for nucleon decays (e.g. targeting SUSY-favored modes)
  - Measurement of neutrinos from galactic core collapse supernovae
  - Measurements with atmospheric neutrinos

Start data taking ~ 2024

 $\Delta m_{12}^2$ 

 $|\Delta m_{32}^2|$ 

#### **Fermilab Accelerator Complex**

- H<sup>-</sup> linac
  - 400 MeV
- Booster
  - h = 84
  - 15 Hz
  - 400 MeV -> 8 GeV
- Recycler
  - h = 588
  - Slip-stack 12 batches (double bunch intensity)
- Main Injector
  - 8 GeV -> 120 GeV



LBNF proton beam extracted from MI-10 straight section



701 kW on the NuMI/NOvA target in one supercycle on June 13, 2016!! Proton Improvement Plan (PIP)

# PIP-II (~2025)

- Key elements:
  - Replace existing 400 MeV linac with an 800 MeV linac capable of CW operation.
    - Higher energy + painting
      = more beam in Booster
  - Increase Booster rate to 20 Hz
  - "Modest" improvements to Recycler and MI
- Goals:
  - 1.2 MW @ 120 GeV
  - 100+ kW @ 800 MeV
    - Thanks to cryoplant from India



162.5 MHz325 MHz0.03 -10.3 MeV10.3-185 MeV



7

Not to Scale

#### **Primary Beamline**

The primary beam designed to transport high intensity protons in the energy range of 60-120 GeV to the LBNF target, with repetition rate of 0.7-1.2 sec, and 10 μs pulse duration



#### **Target Hall Layout**



# **Decay Pipe Layout**

- 194 m long, 4 m inside diameter
- Helium filled
- Double-wall, carbon steel decay pipe, with 20 cm annular gap
- 5.6 m thick concrete shielding
- It collects ~30% of the beam power, removed by an air cooling system





layer

## Hadron Absorber

**Absorber Hall and Service Building** 

The Absorber is designed for 2.4 MW ~ 30% of beam power in Absorber 515 kW in central core 225 kw in steel shielding

> Absorber Cooling Core: water-cooled Shielding: forced air-cooled



## **Overview of Beamline Muon Monitors**

- 1. Array of Ionization Detectors that measure flux of all muons passing through (diamonds, Si)
  - Measure beam center and intensity
  - Spill by spill monitoring of beam

- 2. Threshold Gas Cherenkov Detector
  - Measure signal intensity at different gas pressures and detector orientations
  - Extract muon spectrum in alcove with the intention to constrain the neutrino flux

- 3. Stopped muon counters
  - Measure muon flux at several different energies
  - Robust measurement of beam flux and composition
  - Use to constrain neutrino flux



#### Testing prototypes at the NuMI beamline

#### Reference design baffle, target and horns - Viable for 1.2 MW

NuMI-like (low energy), with modest modifications



Protects target cooling structure and horns from errant beam pulses

47 graphite target segments, each 2 cm long and spaced 0.2 mm apart, 10 mm in width





#### Strong target R&D program in place

#### Inner Conductor of NuMI Horn



New Horn power supply needed to reduce the pulse width to 0.8 ms.

**Baffle** 

# Mechanical model for optimized horns & target





Horns constructed from 75% 6061-T6 aluminum forgings. Minimum fatigue life requirements of 100 million pulses for each design in the energy range from 60 – 120 GeV.

# **Preliminary optimization results**



# **LBNF/DUNE Milestones**

- Critical Decision-0 (CD-0) approved, January 8, 2010.
- CD-1 Refresh approved, November 5, 2015.
- CD-3a approval expected in December 2016 (far-site pre-excavation and excavation).
- Beamline optimization conceptual design ready for review, September 2017.
- CD-3b approval expected in April 2019 (near-site embankment placement).
- CD-2/CD-3c expected in March 2020 (baselining and start of construction).
- Beamline installation and checkout complete, August 2026.
- LBNF complete, December 2026.

## Conclusions

- Significant progress with preliminary design and beam optimization effort in all Beamline systems.
- Need to advance the conceptual design and take decisions on alternative/optimized options very soon since in October 2017 we need to start working on a definite preliminary design.
- Lots of opportunities for collaboration on the design of specific Beamline components as well as on beam simulations and R&D efforts.
- Now is the time to join the Beamline effort and make a substantial difference.
- We are excited and looking forward to design and build this Beamline working together with all our international partners!!

Backup

#### **Fermilab Accelerator Complex**



## **Facility and Experiment**

- **LBNF**: provides facility infrastructure at two locations to support the experiment:
  - Near site: Fermilab, Batavia, IL facilities and infrastructure to create neutrino beam and host the near DUNE detector
  - Far site: Sanford Underground Research Facility, Lead, SD facilities to support the far DUNE detectors
- **DUNE**: Deep Underground Neutrino Experiment
  - Near and far site detectors



# **LBNF Beam Operating Parameters**

Summary of key Beamline design parameters for  $\leq$ 1.2 MW and  $\leq$ 2.4 MW operation

| Parameter                                                   | Protons per<br>cycle | Cycle Time (sec)  | Beam Power<br>(MW) |
|-------------------------------------------------------------|----------------------|-------------------|--------------------|
| ≤ 1.2 MW Operation - Current Maximum Value for LBNF         |                      |                   |                    |
| Proton Beam Energy (GeV):                                   |                      |                   |                    |
| 60                                                          | 7.5E+13              | 0.7               | 1.03               |
| 80                                                          | 7.5E+13              | 0.9               | 1.07               |
| 120                                                         | 7.5E+13              | 1.2               | 1.20               |
| < 2.4 MIN Operation Diamad Maximum Value for LDNE 2nd Dises |                      |                   |                    |
| Proton Beam Energy (GeV):                                   | iviaximum value      | or LBINF 2nd Phas | e                  |
| 60                                                          | 1.5E+14              | 0.7               | 2.06               |
| 80                                                          | 1.5E+14              | 0.9               | 2.14               |
| 120                                                         | 1.5E+14              | 1.2               | 2.40               |

#### (1.1 – 1.9)x10<sup>21</sup> POT/yr

#### Pulse duration: 10 µs

#### Beamline for a new Long-Baseline Neutrino Facility MI-10 Extraction, Shallow Beam

Beamline Facility contained within Fermilab property



All systems designed for 1.2 MW initial proton beam power (PIP-II). Facility is upgradeable to 2.4 MW proton beam power.

#### **Pictures of NuMI Horns & Power Supplies**



New Horn power supply needed for LBNF to reduce the pulse width to 0.8 ms.

## **Current Work on Muon Monitors**



#### Stopped Muon Counter

- Small Cherenkov volume surrounded by scintillating veto
- Measure stopped µ decays downstream of the absorber after beam pulse ends

Stopping muons have a fixed range: an array of detectors can measure a spectrum instead of just an integral above a threshold

- Muon lifetime fit allows for subtraction of any non-muon background
- Prototype production/testing underway at U. Colorado
- Will use custom PMT bases developed at Drexel to gate off PMTs during high-rate beam pulse, only operate tube after beam later, when muons are decaying

- Testing several possible technologies at the NuMI beamline
  - Diamond detectors, gas Cherenkov detector
- Studying detector operation and long-term stability
- Hope to measure muon flux using scans of Cherenkov detector angle and pressure



## **Scope of re-optimization**

- Horns (long lead items)
- Target
- Integration/mounting of target into horn, baffle mounting, etc.
- Alternative option of gas in target chase
- Absorber
- Associated Modeling
- Associated Radiation Protection
- Horn support modules (three)
- Horn power supply (ies) (0.8 ms)
- Remote handling (casks, morgue capacity analysis, workcell,..)
- Associated Conventional Facilities

# **Preliminary optimization results**



#### **Beryllium R&D**

- Be Strength Model Testing and **Development at Southwest Research Institute** 
  - Testing complete
  - Strength model development on track to be complete in June
  - Will be used to benchmark with HiRadMat BeGrid results
- HiRadMat (CERN) BeGrid **Experiment PIE** 
  - Profilometry of all exposed samples completed
  - Preliminary results indicate
    - less deformation than predicted with extrapolated strength model
    - One Be grade (S200FH) shows consistently less deformation than the others
    - Repeated pulses resulted in plastic strain ratcheting





#### Graphite R&D

- NuMI Target (NT-02) graphite PIE at PNNL preliminary results:
  - Evidence of swelling in highly irradiated areas (2 5%)
  - Nature of impurities on fracture surface indicates cracking occurred during operation
  - Not much evidence of displacement damage in area away from beam
  - Currently examining area near beam center via TEM
  - Will use these results to bench-mark with other irradiations (lower energy, higher current)







#### **Other ongoing HPT R&D Activities**

- Continuation of studies on NuMI primary beam window at Oxford
- Preparation for RaDIATE irradiation run at BNL's BLIP facility
  - Hundreds of samples
  - Be, Graphite, Glassy Carbon, Ti alloys, Si, TZM, Ir
  - In collaboration with FRIB, J-PARC, BNL, CERN, ESS
- Preparation for LE ion irradiations
  - Possibly at Michigan, Surrey, and Notre Dame Universities







