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Reference Design

The LBNF neutrino beam will send neutrinos
from Fermilab in Illinois to the DUNE detectors
in the Stanford Underground Research Facility
(SURF) in South Dakota. The current reference
design is based heavily on the very successful
NuMI beamline at Fermilab. It will use 60-120

GeV protons from the Main Injector that will
impinge in a graphite target similar to the NuMI
target but modified to accommodate a 1.2 MW
proton beam. Resulting pions and kaons will be

focused through a pair of focusing horns
identical to those used in NuMI and allowed to
.decay in a 194 m long, 4 m diameter decay pipe. |
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Estimated DUNE neutrino fluxes when horn
currents are configured to focus positively
charged hadrons
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Optimization Algorithm

Goals and Criteria
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