Electron Detection in the Reference Near Detector for DUNE and Constraints on the Anti-Electron-Neutrino Normalization

Hongyue Duyang, University of South Carolina On behalf of the DUNE Collaboration

Overview

DUNE is a long-baseline neutrino experiment aiming to solve remaining questions in neutrino physics by measuring v_{μ} to v_e/\bar{v}_{μ} to \bar{v}_e oscillation in one single experiment. It is therefore critical for DUNE to identify and measure the electrons and positrons precisely. The fine-grained tracker (FGT), the reference near detector for DUNE, is designed to provide a precise determination of the electron/positron identification, momentum, and energy.

A Fine-Grained Tracker (FGT) As the DUNE ND

- $\sim 3.5 \text{m} \times 3.5 \text{m} \times 6.5 \text{m} \text{STT}$ ($\rho \simeq 0.1 \text{ g/cm}^3$).
- 4π ECAL in a dipole magnetic field (B = 0.4 T).
- 4π MuID (RPC) in dipole and up/downstream.
- Pressurized 40 Ar target $\approx \times 10$ FD statistics and 40 Ca target.

Electron Momentum Measurement

- Use the track curvature in the dipole magnetic field for the momentum measurement.
- Use ECAL for more precise energy measurement
- e+/e- momentum resolution: ~ 3.5% (at ~3 Gev).
- Dipole magnetic field allows distinguish e+ for e-, and therefore a measurement of anti-electron neutrino content in the beam.

	<image/>	target)
Radiator (Target) Mass	7 tons]
Other Nuclear Target Mass	1–2 tons	
Vertex Resolution	0.1 mm	
Angular Resolution	2 mrad	
E_e Resolution	$6\%/\sqrt{E}$	
	(4% at 3 GeV)	
E_{μ} Resolution	3.5%	
$\overline{ u_{\mu}}/\overline{ u}_{\mu}$ ID	Yes	
$ u_e/ar{ u}_e$ ID	Yes	
π^- .vs. π^+ ID	Yes	
π^+ .vs. proton .vs. K^+	Yes	
${ m NC}\pi^0/{ m CC}$ e Rejection	0.1%	
${\sf NC}\gamma/{\sf CC}$ e Rejection	0.2%	
$CC\mu/CC$ e Rejection	0.01%	

Anti-Electron Neutrino Event in FGT

- Electrons and anti-electrons make tracks in the FGT.
- Hadrons are also track C candidate in NOMAD
 Able to measure lepton and hadron momentum vectors with high precision → Most difficult to measure among the 4 v-species precision

Electron Identification

Informations that can be used for identification of electron:

- Transition radiation (TR) measurement in the Staw Tube Tracker (STT).
- · Congitudina and transverseenergytoeposition patierninthin EGAL.
- Pattern of energy loss (helical track-fit) in STT.

Electron Measurement Validation

05

- Proposal to built STT and ECAL prototype in a test beam
- e+/- sample from gamma conversion for identification efficiency.
- $\pi^0/K^0/\eta$ for energy scale constraint.
- Experience from other experiments: NOMAD (STT), NOvA (ECAL).

12

A Fine-Grained Tracker ND for DUNE is able to precisely identify and measur^{@4}electrons and positions. The particle identification involves measurements of the transition-radiation in the high-resolution straw tube tracker (STT) and the profile of the energy deposition in the ECAL; the momentum is determined from the track reconstruction in the STT within a dipole B-field. The ability to reconstruct the electron/positrons and the hadrons from the anti-electron neutrino interactions permits an accurate determination of the anti-electron neutrino content of the beam.