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♦ We have heard recently that it is very likely that there will be 
no UV laser system at protoDUNE with which to calibrate out 
space charge effects (SCE), among other things
• This will impact our calibration strategy significantly!

♦ Placement of CRT panels important consideration for 
properly calibrating out SCE
• It has not been shown yet at e.g. MicroBooNE that we can obtain a 

clean sample of t0-tagged tracks with the light-collection system

♦ Highlight considerations for cosmic ray tagger (CRT) in this 
talk, including placement and how to do calibration
• Jacob's talk:  preliminary answers to partial set of relevant 

questions

• This talk:  more questions to be answered; also calibration strategy, 
impact on CRT needs, and required inputs
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Quick Look at SCE ImpactQuick Look at SCE Impact
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Quick Look at SCE ImpactQuick Look at SCE Impact
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At 500 V/cm, for protoDUNE-SP:

Impact on recombination:  ~10%
Impact on spatial distortions (drift):  ~5 cm

Impact on spatial distortions (transverse):  ~20 cm

Much worse for protoDUNE-DP
Much worse for lower drift field



Calibrating w/ Muon TracksCalibrating w/ Muon Tracks
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♦ Two samples of t0-tagged tracks can provide SCE corrections: 

• Single tracks – enable corrections at TPC faces by utilizing endpoints of 
tracks (correction vector approximately orthonormal to TPC face)

• Pairs of tracks – enables corrections in TPC bulk by utilizing 
unambiguous point-to-point correction looking at track crossing points

♦ Require high-momentum tracks (plenty from cosmics, beam halo)
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Corrections at TPC FacesCorrections at TPC Faces
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♦ Claim on previous slide is that the correction at TPC faces 
using single tracks is the correction vector obtained by 
projecting the track end point onto the closest TPC face

♦ True at most boundaries as only one SCE component is large

♦ TPC edges (boundaries in Y and Z) will still need pairs of 
tracks

cathode

ΔX ΔY

anode
SMALL LARGE



Why Crossing Points?Why Crossing Points?
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♦ As Igor pointed out at protoDUNE Science Workshop, a single 
laser track is not enough to obtain the SCE correction vector

♦ Principle applies to calibration with muon tracks as well!

I. Kreslo
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♦ Discussed with 
Flavio possible 
arrangement of CRT 
panels on front and 
back of detector

♦ 8+8 panels on front, 
8+8 panels on back

♦ Would be useful to 
tag t0 for both muon 
halo tracks and 
cosmic muon tracks

♦ 32 panels in total, 
but possibly more to 
use elsewhere?
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Track SamplesTrack Samples
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♦ With anode planes and front/back CRT panels, you get three 
samples of t0-tagged tracks:

• Cosmics crossing both anode planes (left)

• Cosmics crossing a CRT panel (middle)

• Muon halo tracks crossing a CRT panel (right)
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Total Track CoverageTotal Track Coverage
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♦ Combining these t0-tagged track samples, we get complete coverage 
for single tracks!

♦ However, if you want to calibrate in the bulk, you need track pairs, 
and they should be at relatively large angle w.r.t. each other

♦ Near top of TPCs would have much lower statistics – CRT coverage 
on top helps (muon halo, tag from top CRT)

• Front/back CRT cosmics will help fill in these areas as well (not shown)
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♦ Combining these t0-tagged track samples, we get complete coverage 
for single tracks!

♦ However, if you want to calibrate in the bulk, you need track pairs, 
and they should be at relatively large angle w.r.t. each other

♦ Near top of TPCs would have much lower statistics – CRT coverage 
on top helps (muon halo, tag from top CRT)

• Front/back CRT cosmics will help fill in these areas as well (not shown)
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♦ We can perform a calibration of SCE w/o a laser system using 
cosmic tracks,muon halo tracks IF we can tag t0 with high reliability

• Use both single tracks and track pairs for calibration of TPC faces and TPC 
bulk, respectively

♦ Best way to do this is extensive CRT system
• Light-collection system likely not able to reliably (high degree of 

certainty as required in calibration) tag t0

♦ Installing CRT panels on front/back of detector in discussion
• Need to know number of tracks we can utilize for the measurement per 

unit time – including all possible calibration samples

• Jacob has looked at cosmic tracks passing through front/back CRT

• Need to combine this with look at e.g. anode-anode crossing tracks, but 
preliminary conclusion is that top CRT panels probably not 
necessary, but helpful (more statistics in crucial regions)

• Also need input about beam halo rate and spatial distribution!



1313

BACKUP
SLIDES

13



Space Charge EffectSpace Charge Effect
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♦ Space charge:  excess electric charge (slow-moving ions) 
distributed over region of space due to cosmic muons 
passing through the liquid argon
• Modifies E field in TPC, thus track/shower reconstruction

• Effect scales with L3, E-1.7

Ion Charge Density

B. Yu
K. McDonald

Approximation!

No Drift!



SpaCE:  OverviewSpaCE:  Overview
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♦ Code written in C++ with ROOT libraries

♦ Also makes use of external libraries (ALGLIB)

♦ Primary features:
• Obtain E fields analytically (on 3D grid) via Fourier series

• Use interpolation scheme (RBF – radial basis functions) to 
obtain E fields in between solution points on grid

• Generate tracks in volume – line of uniformly-spaced points

• Employ ray-tracing to “read out” reconstructed {x,y,z} point for 
each track point – RKF45 method

♦ First implemented effects of uniform space charge deposition 
without liquid argon flow (only linear space charge density)
• Also can use arbitrary space charge configuration

– Can model effects of liquid argon flow (however, interpretation is 
difficult)



Impact on Track Reco.Impact on Track Reco.
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♦ Two separate effects on reconstructed tracks:
• Reconstructed track shortens laterally (looks rotated)

• Reconstructed track bows toward cathode (greater effect near center 
of detector)

♦ Can obtain straight track (or multiple-scattering track) by 
applying corrections derived from data-driven calibration
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Compare to FE Results:  ECompare to FE Results:  E
xx
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♦ Looking at central z slice (z = 5 m) in x-y plane (MicroBooNE)

♦ Very good shape agreement compared to Bo Yu's 2D FE (Finite 
Element) studies

♦ Normalization differences understood (using different rate) 
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♦ Looking at central z slice (z = 5 m) in x-y plane (MicroBooNE)

♦ Very good shape agreement here as well
• Parity flip due to difference in definition of coordinate system
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♦ Compare 30 x 30 x 120 field calculation (left) to 15 x 15 x 60 field 
calculation with interpolation (right) – for MicroBooNE

♦ Include analytical continuation of solution points beyond boundaries 
in model – improves performance near edges
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Ray-TracingRay-Tracing

♦ Example:  track placed at x = 1 m  (anode at x = 2.5 m)
• z = 5 m, y = [0,2.5] m

MicroBooNE
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Sample “Cosmic Event”Sample “Cosmic Event”
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ComplicationsComplications
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♦ Not accounting for non-uniform charge deposition rate in 
detector  significant modification?→

♦ Flow of liquid argon  likely significant effect!→
• Previous flow studies in 2D... differences in 3D?

• Time dependencies?

No Flow Flow w/o Turbulence Flow w/ Turbulence

B. Yu



Liquid Argon FlowLiquid Argon Flow
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B. Yu



Smoking-gun Test for SCESmoking-gun Test for SCE
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♦ Can use cosmic muon tracks for calibration
• Possibly sample smaller time scales more relevant for a particular 

neutrino-crossing time slice

• Minimally: data-driven cross-check against laser system calibration

♦ Smoking-gun test:  see lateral charge displacement at 
track ends of non-contained cosmic muons  space charge →
effect!

• No timing offset at transverse detector faces (no E
x
 distortions)

• Most obvious feature of space charge effect

Drift

Δy
edge

Δy
edge Anode



35-ton 35-ton with LAr Flowwith LAr Flow
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35-ton with LAr Flow (cont.)35-ton with LAr Flow (cont.)
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Simulation of SC EffectSimulation of SC Effect

♦ Can use SpaCE to produce displacement maps

• Forward transportation:  {x, y, z}
true

  {x, y, z}→
sim

– Use to simulate effect in MC

– Uncertainties describe accuracy of simulation

• Backward transportation:  {x, y, z}
reco

  {x, y, z}→
true

– Derive from calibration and use in data or MC to correct 
reconstruction bias

– Uncertainties describe remainder systematic after bias-correction

♦ Two principal methods to encode displacement maps:
• Matrix representation – more generic/flexible

• Parametric representation (for now, 5th/7th order polynomials) – 
fewer parameters

– Uses matrix representation as input  → use for LArSoft 
implementation



Nominal SP GeometryNominal SP Geometry
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♦ Nominal SP protoDUNE 
geometry:
• Drift (X):  3.6 m

• Height (Y):  5.9 m

• Length (Z):  7.0 m

♦ Dimensions used for 
simulations slightly 
different (to simplify 
calculations):
• Drift (X):  3.6 m

• Height (Y):  6.0 m

• Length (Z):  7.2 m



Nominal SP GeometryNominal SP Geometry
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♦ Nominal SP protoDUNE 
geometry:
• Drift (X):  3.6 m

• Height (Y):  5.9 m

• Length (Z):  7.0 m

♦ Dimensions used for 
simulations slightly 
different (to simplify 
calculations):
• Drift (X):  3.6 m

• Height (Y):  6.0 m

• Length (Z):  7.2 m

Results here shown only for
nominal geometry – for modified

geometry with reduced maximal drift
 length, see backup slides.
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Modified E Field (Central Z)Modified E Field (Central Z)
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Modified E Field (TPC End)Modified E Field (TPC End)
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Spatial Distortions (Central Z)Spatial Distortions (Central Z)
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Spatial Distortions (TPC End)Spatial Distortions (TPC End)
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SP/DP Comp. – E Field Dist.SP/DP Comp. – E Field Dist.

SP
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SP/DP Comp. – E Field Dist.SP/DP Comp. – E Field Dist.
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SP/DP Comp. – Spatial Dist.SP/DP Comp. – Spatial Dist.
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SP/DP Comp. – Spatial Dist.SP/DP Comp. – Spatial Dist.
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Modified GeometryModified Geometry
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♦ Modified ProtoDUNE 
geometry:
• Drift (X):  2.2 m

• Height (Y):  5.9 m

• Length (Z):  7.0 m

♦ Dimensions used for 
simulations slightly 
different (to simplify 
calculations):
• Drift (X):  2.4 m

• Height (Y):  6.0 m

• Length (Z):  7.2 m

2.2 m

2.2 m



39

Modified E Field (Central Z)Modified E Field (Central Z)
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Modified E Field (TPC End)Modified E Field (TPC End)
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Distortions (Central Z)Distortions (Central Z)
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Distortions (TPC End)Distortions (TPC End)
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Bulk Calibration w/ CosmicsBulk Calibration w/ Cosmics
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Update Correction to Point P

“True” Track 
(no SCE)

Reconstructed
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♦ Fill in displacement correction map 
gaps using cosmic muons

♦ One idea:  correction from center of 
line connecting points of closest 
approach (separation d) between 
two tracks (before and after SCE)

• Get “true” muon track from PCA fit 
to already-calibrated points 

• Weight each contribution by e-d/D 
(where D is tunable parameter)

• Use only high-momentum 
cosmics to minimize MCS effects

♦ Relies on first correcting points at 
boundaries, high stats to average 
out MCS, and knowing track t0

M. Mooney
arxiv:1511.01563

http://arxiv.org/abs/1511.01563

