Photon Detector Requirements, Simulation, and Reconstruction

Alex Himmel, Fermilab

ProtoDUNE Photon Detector Review University of Chicago

August 2nd, 2016

Introduction

- Why we need photon detectors in DUNE.
 And why we need them in protoDUNE.
- How we simulate and reconstruction photon detector signals.
- Detector performance estimates.
 - Proton decay
 - Supernova neutrinos

Addressing point 1 of the charge.

Role of Photon Detectors in DUNE

- A time projection chamber relies on having a time to locate an event in space.
 - Light is detected ~instantly relative to the drift time of charge in the TPC.
 - This is needed to correct the calorimetric energy measurement for attenuation and in order to properly fiducialize events.
- We need t_0 to enable the non-beam parts of the DUNE physics programs.
 - Nucleon decay
 - Supernova neutrinos
- Photon detectors in protoDUNE:
 - We need to evaluate light yield and other performance metrics in practice.
 - May also enable better identification and rejection of cosmic rays overlaid on the beam events.

Official Photon Detector Requirements

- Event time shall be measured with high efficiency to allow the measurement of the drift coordinate with sufficient precision for events with visible energy above 200 MeV.
- Event time for events with visible energy <200 MeV shall be measured with high efficiency and sufficient precision to correct for drift time and improve energy resolution.
- Absolute event time shall be measured with sufficient accuracy to allow global analysis of supernova neutrino wave front.
- We have estimated the that 0.1 PE/MeV at the CPA is required to meet these goals.

- Adopt a strategy developed by µBooNE: **Photon Library**
- Lookup table giving "visibility" of each position in the detector for each optical detector
 - For each "voxel" in the detector, generate isotropic photons
 - Visibility: fraction that end up on each optical detector.

LAr Optical Properties	
Absorption Length	20 m
Rayleigh Scattering	60 cm

- Adopt a strategy developed by µBooNE: **Photon Library**
- Lookup table giving "visibility" of each position in the detector for each optical detector
 - For each "voxel" in the detector, generate isotropic photons
 - Visibility: fraction that end up on each optical detector.

γ/MeV x Slice at 9.6 cm

Simulating Electronics Response

- Once photons arrive at optical detectors, introduce:
 - Mapping to multiple electronics channels
 - Scintillation time distribution:
 early (6 ns) and late (1.6 μs)
- Simulate signals by adding together single-PE waveforms.
 - Based on measurements made at IU (arXiv:1408.1763)
- Simulating response with 3 ganged SiPMs in the works by a student at KSU.
 - Also based on IU measurements.

Simulating Electronics Response

- Other electronics effects based on lab measurements at IU and Hawaii
 - Line noise (σ =2.6 ADCs)
 - Dark noise (10 Hz/SiPM)
 - Cross talk (16%)

Simulating Electronics Response

- Other electronics effects based on lab measurements at IU and Hawaii
 - Line noise (σ =2.6 ADCs)
 - Dark noise (10 Hz/SiPM)
 - Cross talk (16%)

Reconstructing Optical Signals

- Reconstruct "Optical Hits"
 - Identify pulses of light in a single channel
- Reconstruct a "Flash"
 - Collect hits which are close in time across multiple channels
- A flash should correspond to a single light source within the detector
 - A time, an amount of light, an approximate position

Photons from ³⁹Ar

- 39 Ar β decays, ~500 keV endpoint
 - 12,000 photons
- Energy is low, but visible if close to the PDs
 - 3.5 γ 's if decay is close to the PDs
 - geo ε = 10%, det. ε = 0.3%
- A potentially significant background rate
 - 1.01 Bq/kg
- Simulate in both active and passive LAr.

Radiological Backgrounds

Performance Estimates

- The obvious question: what collection efficiency is needed to meet the DUNE physics goals?
 - Reconstruct nucleon decays and exclude nucleon decay backgrounds throughout the detector volume, especially entering cosmogenics.
 - Have good efficiency for identifying t_0 for supernova neutrino events.
- Difficult to do the "inverse" problem with simulation.
 - Instead we will posit a "reasonable" performance for the photon detectors, and then show how that performs with:
 - Nucleon Decays
 - Supernovas
 - ³⁹Ar Backgrounds
- We will show you the current state of the art reconstruction efficiency for nucleon decay and SN-like events and expected ³⁹Ar backgrounds at a range of thresholds.
 - We are working with much more realistic performance estimates we expect to do better with time.

How much light do we need?

$40,000 \times 0.62 = 24,600 \gamma$ produced/MeV deposited

- Assumes nominal drift field
- Right now same yield per energy deposited is assumed

24,600 × 4.7% * = 1,200 γ /MeV reaching detectors

- * Average geometrical acceptance
- Includes 30% shadowing from wire mesh.
- Scattering length ~60 cm

1,200 × 60%[†] × 0.5%[‡] = 3.8 PE/MeV digitized

- [†] Average with 2 m attenuation length
- * Target efficiency at SiPM
- About 10× lower at the CPA.

Not all late light will be usable, so in practice we expect **more than 1 PE/MeV and less than 4 PE/MeV.**

- 0.1 to 0.4 PE/MeV at the CPA

Nucleon Decay

8 MeV Electrons (Supernova-like)

Photon Simulation in ProtoDUNE

- Also still a work in progress, but we are getting ready now.
- An early observation:
 - The coarseness of the PD "binning" in the beam direction skews the reconstructed position away from where we know the particles enter.
 - We are considering how to handle this now.

Bruce Howard, IU

Conclusions

- With our estimates of eventual detector performance, we enable the non-beam physics program at DUNE.
 - Excellent performance for nucleon decay.
 - Some efficiency even at the lowest supernova energies.
- However, we must confirm this before before we undertake the far detector.
 - We need better estimates of the real light yield in situ in **protoDUNE**.
 - We will continue to push on photon detector analysis tools like selections to mitigate ³⁹Ar...
 - and test the performance of those algorithms in protoDUNE.
- We are also looking into what physics possibilities are opened up with a much more capable system, but that is beyond the scope of this review.

Backups

 At right, a 2D slice from the Photon Library for a single photon detector.

 At right, a 2D slice from the Photon Library for a single photon detector.

 At right, a 2D slice from the Photon Library for a single photon detector.

 Now can see the structure of the PD arrangement.

x Slice at 9.6 cm

 Rotate our view 90° and we can visually see the fall-off in collection efficiency.

- Libraries can also include the attenuation within the light guides.
- Attenuation parameterization based on measurements in the lab

//MeV x Slice at 9.6 cm

Supported Geometries

Wire and Mesh Shadowing

- There is also a shadowing effect from the wire planes and mesh
 - Measured in the lab at Duke
 - $1/\sin(\theta)$ angular dependence
 - Scaled by gauge/pitch
 - Screen: 80 μm/0.9 cm
 - Wire planes: 150 μm/5 mm

- Approximate as 30% shadowing
 - Not yet fully implemented in our simulation
 - 27% straight ahead, more at steep angles

