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Purpose

⏛ Use the MuCool Test Area (MTA) beamline as a diagnostic line 
to measure a parameter known as emittance coming out of 
Linac

⏛ Knowledge of the transverse properties of the Linac beam can 
help improve Booster injection efficiency
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Courant-Snyder Parameters
⏛ Model the beam and understand how the envelope propagates
⏛ Utilize transfer matrices derived from magnet optics to calculate 

beam trajectory and properties
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Phase Advance
⏛ Amount of oscillation period a particle has gone 

through in a certain arc – will be used to parameterize 
data sets
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Phase Space
⏛ Betatron oscillation as a function of distance along the beam path
⏛ Parameter space that is used for emittance calculations
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Emittance
⏛ Envelope of particles in phase 

space is elliptical when beam is 
exposed to linear forces

⏛ Emittance is equal to the area of 
this envelope – invariant quantity

⏛ Important metric for 
understanding beam properties 
& optics models

⏛ Need to have a method of 
calculating the emittance from 
beam position measurements
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Muon Test Area (MTA)
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⏛ 400 MeV line off of Fermi’s linear accelerator 
⏛ Useful for beam diagnostics and testing
⏛ Data used for beam profile reconstruction



Secondary Emission Multiwires
⏛ 48 evenly spaced parallel wires in 

both planes
⏛ Protons strike the wires and liberate 

electrons, producing a net charge 
proportional to the beam intensity 
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⏛ 0.5, 1, or 2mm 
spacing

⏛ Profile monitor 
can be rotated 
in and out of 
beam to 
minimize losses



Analyzing Multiwire Data
⏛ Gaussian Curve Fit

⏛ Non-linear least squares method done using Python to determine function 
parameters

⏛ χ2 goodness of fit test
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⏛ Root Mean Square (RMS) Method
⏛ Highly sensitive to tails
⏛ Where x represents the wire position and P(n) is the signal at that wire
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Secondary Emission Multiwires

⏛ Assume Gaussian 
distribution, compute 
beam radius in both planes 
& compare to RMS

⏛ Specifically looking at 10 m 
drift in MTA (wires 4, 5, & 6 
with 2mm, 0.5mm, & 1mm 
pitches respectively)

⏛ August 2014: 5 data sets 
taken at each multiwire for 
all of the 5 phase 
advances, also referred to 
as the tune
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Cleaning up Data
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⏛ Gaussian 
distribution + linear 
background 
component fit

⏛ Linear intercept 
subtracted as 
background

⏛ Gaussian tails 
outside 3σ/4σ from 
peak cut for more 
accurate RMS 
calculations
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Issues with Gaussian Fit and RMS Calculation
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⏛ Beam scraping leads 
to fractured beam 
profiles

⏛ Distribution is not 
always well defined 
with a Gaussian 
function

⏛ RMS method highly 
sensitive to cutoff 
point because of tails



Methodical Accelerator Design (MAD)

⏛ Simulation program 
developed at CERN

⏛ Models the beam using 
Courant-Snyder 
parameters

⏛ Input lattice of all 
magnets & respective 
strengths at each tune
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Current Conversion & Simulations
⏛ Use currents from operator log 

to determine quadrupole k-
values

⏛ Run simulation with different 
lattices based on calculations
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MAD Method

⏛ Use calculated quadrupole settings to recreate conditions 
when beam profiles were recorded 

⏛ ‘Match’ method used to fit emittance values 
⏛ Introduce constraint using computed beam width values at each wire

⏛ MAD returns emittance values with penalty function
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MAD Method: Results
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Issues with MAD Method

⏛ This method relies on initial conditions coming out of Linac
⏛ The measurements we have were taken before recent upgrades

⏛ Have minimal control over convergence of MAD’s matching 
algorithm
⏛ Our system is underconstrained and the algorithm will not always 

iterate enough times to find a solution with high confidence values

⏛ Heavily reliant on a lattice that requires correct component 
spacing data, magnet current values, & consistent fields and 
strengths from magnet to magnet

18Alicia Casacchia | 8/16/16



3-Wire Method

⏛ Beam width calculated at 3 
multiwires in a drift 
⏛Solve linear system derived from 

linear optics transfer matrices

where L1 & L2 are distances along nominal 
trajectory and 𝜎 values are beam radii (𝜎 = R2)

19

𝜖JK8 = 𝜎99𝜎)) − 𝜎9))

Alicia Casacchia | 8/16/16

𝑅)) = 𝑅9) + 2𝐿9𝜎9) + 𝐿9)𝜎))
𝑅X) = 𝑅9) + 2(𝐿9+𝐿))𝜎9) + (𝐿9 + 𝐿)))𝜎))



3-Wire Method Using Gaussian 𝜎
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3-Wire Method Using RMS 𝜎
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Conclusions & Future Directions
⏛ We appear to see violation of emmitance conservation in the vertical but not 

in the horizontal

⏛ Most likely source of this violation is non-elliptical beam
⏛ Using tomographic techniques to reconstruct the beam profile and test this 

assertion
⏛ Move away from reliance on Courant-Snyder parameters which assume elliptical 

properties

⏛ Once beam is running again, we can take more data for tomographic 
reconstruction

⏛ Investigation into causes of non-elliptical envelope
⏛ Better understanding of beam in transverse phase space will help beam 

losses into Booster
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Dispersion

⏛ Force on particles is velocity 
dependent, so particle 
trajectories are dependent on 
momentum

⏛ Analogous to a prism effect in 
optics

⏛ Needs to be compensated for in 
measured beam widths, but we 
do not have a confident measure 
of CY

Y
at this time
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