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Purpose

= Use the MuCool Test Area (MTA) beamline as a diagnostic line
to measure a parameter known as emittance coming out of
L Inac

= Knowledge of the transverse properties of the Linac beam can
nelp improve Booster injection efficiency




Courant-Snyder Parameters

= Model the beam and understand how the envelope propagates

= Utilize transter matrices derived from magnet optics to calculate
beam trajectory and properties

Twiss Parameters
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Phase Advance

= Amount of oscillation period a particle has gone 2 ds
through in a certain arc — will be used to parameterize ~ ¥~ 3@
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Phase Space

= Betatron oscillation as a function of distance along the beam path
= Parameter space that is used for emittance calculations
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Emittance

= Envelope of particles in phase
space is elliptical when beam is -
exposed to linear forces

= Emittance is equal to the area of
this envelope — invariant quantity
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beam position measurements

= |[mportant metric for —=yx? + 2axx’ + fx”?
understanding beam properties o = —
& optics models |
= Need to have a method of 2
calculating the emittance from 57 et L
2 N 4 ;
>




Muon Test Area (MTA)

= 400 MeV line off of Fermi’s linear accelerator
= Useful for beam diagnostics and testing

= Data used for beam profile reconstruction
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Secondary Emission Multiwires

= 48 evenly spaced parallel wires in
both planes

= Protons strike the wires and liberate
electrons, producing a net charge
proportional to the beam intensity

=0.5,1, or2mm
spacing

= Profile monitor
can be rotated
in and out of

beam to
minimize losses




Analyzing Multiwire Data

= Gaussian Curve Fit

= Non-linear least squares method done using Python to determine function
parameters

= x° goodness of fit test
) =4 e
x) = e
J oV2T

= Root Mean Square (RMS) Method

= Highly sensitive to tails
= Where x represents the wire position and P(n) is the signal at that wire
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Secondary Emission Multiwires

= Assume Gaussian
distribution, compute
beam radius in both planes
& compare to RMS

= Specifically looking at 10 m U
dl’ift in MTA (wires 4, 51 & 6 AbeMeana_. 5041 mn S19= £3.0¢ mm Chi= 10
with 2mm, 0.5mm, & 1Tmm
pitches respectively)
= August 2014: 5 data sets e T
taken at each multiwire for RS R AT B R o e s A ol -

all of the 5 phase
advances, also referred to
as the tune
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Cleaning up Data

Voltage [V]

Voltage [V]

1
COCO00O0O0O0000
ONOUBDWNROR

L
COO0O0O0O0O00O0OO0O
coNOOUT A WNPEFE OR

UMW5H (0.0005 m pitch)

EEED_'D::EH]:DJ]J:I Il [ Dﬂﬂﬂﬂganzmﬂ_—===-g——_—==—=—-,
\|:| |1 i
\
\ —
\
\_ -
\ L
—  Gaussian 4 mear = 0.0017836588]
|| — Gaussian + Linear N 4 us,g,vug:0.0018871803
= 1 1 1 e
0.005 0.010 0.015 0.020
Wire Position [m]
UMW5H (0.0005 m pitch)
CCCRagnnannnappaEEE
~N - P -
N 7 |
N
- i
N~ s
N < —
N 4 - _
=~ o=

—  Gaussian TE- B =0.0017458251
o = 4870401
B3 data 1 1 1 - 00037573395

0.004 0.006 0.008 0.010 0.012

Wire Position [m]

= (Gaussian
distribution + linear
background
component fit

= Linear intercept
subtracted as
background

= (Gaussian tails
outside 3o0/40 from
peak cut for more
accurate RMS
calculations



Issues with Gaussian Fit and RMS Calculation
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Methodical Accelerator Design (MAD)

= Simulation program
developed at CERN

= Models the beam using
Courant-Snyder
parameters

= |Input lattice of all
magnets & respective
strengths at each tune
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Current Conversion & Simulations

= Use currents from operator log

to determine quadrupole k-
values

= Run simulation with different

B'dl [T-m/m)]

lattices based on calculations
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MAD Method

= Use calculated quadrupole settings to recreate conditions
when beam profiles were recorded

= 'Match’ method used to fit emittance values
= Introduce constraint using computed beam width values at each wire
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= MAD returns emittance values with penalty function



MAD Method: Results
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Issues with MAD Method

= This method relies on initial conditions coming out of Linac
= The measurements we have were taken before recent upgrades

= Have minimal control over convergence of MAD's matching
algorithm

= Qur system is underconstrained and the algorithm will not always
iterate enough times to find a solution with high confidence values

= Heavily reliant on a lattice that requires correct component
spacing data, magnet current values, & consistent fields and

strengths from magnet to magnet



3-Wire Method

= Beam width calculated at 3
multiwires in a drift

= Solve linear system derived from
linear optics transfer matrices
R% — R% + 2L10'12 + L210'22
R% = Rf 4+ 2(L1+Ly)o1z + (L1 + L2)%02;

where L; & L, are distances along nominal
trajectory and ¢ values are beam radii (6 = R?)

THE BEAM ELLIPSE
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Conclusions & Future Directions

= We appear to see violation of emmitance conservation in the vertical but not
in the horizontal

= Most likely source of this violation is non-elliptical beam

= Using tomographic techniques to reconstruct the beam profile and test this
assertion
= Move away from reliance on Courant-Snyder parameters which assume elliptical
properties

= Once beam is running again, we can take more data for tomographic
reconstruction

= Investigation into causes of non-elliptical envelope

= Better understanding of beam in transverse phase space will help beam
losses into Booster
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Dispersion

= Force on particles is velocity R
dependent, so particle | e parice
trajectories are dependent on Dipole e

momentum
= Analogous to a prism effect in
optics

= Needs to be compensated for in
measured beam widths, but we o2
Omeasured =\/ﬁ€—(D )

do not have a confident measure >

p
of % at this time
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