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Abstract 

 There are several ways of measuring beam intensity. One of those ways is through the 

use of an instrumentation device called a diamond detector. Diamond technology has the 

capability to measure beam intensity, count particles and measure the energy spectrum of the 

beam. With a purpose of looking to replace the current method in measuring beam intensity for 

the Switchyard beamline, which involves using Secondary Emissions Monitors (SEMs), the 

diamond detector may offer a less expensive and more effective way of measuring beam 

intensity. 

Introduction 

 To begin with, an important aspect that came with learning about this piece of 

instrumentation was to start from the beginning, and that dealt with learning about the actual 

piece of gem diamond that made the particle detector work. Specifically, I researched a company 

called Element Six, which is a company that specializes in making diamonds for the 

specifications of using them in applications for particle detectors and other precise instruments. 

Element Six makes the diamond technology through a chemical vapor deposition (CVD) 

process, which makes the diamond to be synthetic. The diamond is formed and created in a 



tightly controlled growth environment where the diamond is subject to strict conditions and 

quality control over the specifications for what the diamond material should be grown to. CVD 

diamonds are usually produced in a vacuum where carbon atoms are supplied from gases like 

methane so the company has the ability to control the gas purity, which is essential to create pure 

diamonds in use of applications in particle detectors and other precise instruments. In addition to 

already selling several diamonds for the purpose to use in particle detectors, the specifications of 

the diamond can also be taken from the customer to Element Six, so then Element Six will grow 

the diamond to the exact dimensions that the customer asked for. This is useful in some cases 

when a diamond detector is placed in a beamline of protons where the scattering angle and the 

power loss of the beam need to be considered for safety reasons or preference of beam position. 

For reference, the specific diamond detector that I had to test and get familiar with had diamond 

material that was 1 x 1 cm2 and 500 micrometers thick. 

 

 The diamond detector is a charged-particle detector. In detail, the diamond detector 

works by a bias voltage that is applied across the diamond material. A thumb of rule is that for 

each 100 micrometers of the diamond material, there will have to be around 100 volts applied 

Figure 1: This is the diamond detector that 

I tested over the summer. It is covered by 

electrical tape to protect the diamond 

material from light. It has to be light-tight 

in order for the diamond detector to 

function properly. 



across the diamond for the diamond detector to function properly. As charged particles hit the 

surface of the diamond material, the diamond material is then ionized and there is a creation of 

free charge carriers, which in essence are electron-hole pairs. After these free charge carriers are 

created from the collision of the charged particles on to the diamond, the drift of these charges 

between the electrodes, which are a part of the diamond detector, creates a signal of current that 

can be measured. In some cases, with precise instrumentation and readout hardware, the current 

signal from the diamond detector is relatively small (picoamp range), so a low noise current 

amplifier would be used in combination with the diamond detector so that when charged 

particles hit the diamond, the current signal will be amplified in order to measure the low 

intensity from the current signal. However, in our case, since we are dealing with a proton beam 

of high intensity (120 GeV), it should not be a problem in reading out a current signal from the 

diamond detector since the beam is producing protons and running at such high intensity.  

 

Another aspect that is important for making the diamond detector a viable beam intensity 

monitor is the need for a high signal to noise ratio. For diamond detector instrumentation, it has 

to have the ability to be able to produce a signal to noise ratio in which the current signal from 

the diamond detector is clearly read. The instrumentation that has to deal with producing a high 

signal to noise ratio involves creating a very good Faraday cage. A Faraday cage is used to block 

Figure 2: Here is a diagram of how the diamond 

detector looks in part of a circuit diagram. The 

diamond material is connected to two electrodes, 

a cathode and an anode, which allow the drift of 

the charges that are made when a charged particle 

ionizes the diamond, which produces a current 

signal. In order for the diamond detector to 

operate, a bias voltage has to be applied, as 

shown as “HV” (high voltage) in the diagram. 



electric fields and is formed by conductive material. A lot of detail has to be taken into account 

for producing a high signal to noise ratio. For example, the types of cables and how the cables 

are wired to readout the current signal matter a lot in having an effective Faraday cage. Another 

key aspect to know about the diamond material is the difference between the two types of 

diamond materials that can be used. The two different types are single crystal diamond and 

polycrystalline diamond. Single crystal diamond is more expensive to produce where all the 

symmetry properties of the diamond material structure is present. A polycrystalline diamond 

consists of several single crystals that are randomly distributed for the diamond material 

structure. A single crystal diamond is preferable in that it offers a more uniform current signal to 

readout from the diamond detector. However, the single crystal diamonds are more expensive 

than the polycrystalline diamonds. 

 

 With the overall purpose for the replacement of SEMs, we looked into some of the 

reasons why the current method for measuring beam intensity should be changed. The way 

SEMs work in measuring the beam intensity is with beam interaction on the Titanium foils 

located in the SEMs. The beam interaction with the foils liberates surfaces electrons from the 

Titanium atoms. The signal from SEMs is then taken to a current digitizer via a coaxial cable. 

Figure 3: Here is an image of Element 

Six single crystal synthetic diamonds. 



The current digitizer then converts the positive electrical charge left on the foil to a number of 

pulses proportional to the amount of charge; this is proportional to the beam intensity. However, 

there are downsides to using the SEMs. One of the downsides that comes with using the SEMs is 

the calibration. For example, if the beam hits the Titanium foils in the same spot for a long time, 

the secondary electron yield will get lower and lower as time goes on because surface electrons 

are being liberated from the same Titanium atoms, leading to an inaccurate measurement of 

beam intensity. With an inaccurate measurement of the beam intensity from the SEMs, this leads 

to a recalibration of the instrument. Also, in addition to this calibration problem, the beam 

position also plays a role in determining the beam intensity. For example, if the beam were to be 

tuned by an operator, the beam would interact with a different spot on the Titanium foil, which 

will give a different amount of positive charge detected on the Titanium foil due to a higher 

secondary electron yield in that area. The problem with this is the different beam intensities that 

are being measured by the SEMs due to calibration issues. Last but not least, the SEMs also 

contain large material. SEMs contain around 10 Titanium foils, with a thickness of about 5 

millimeters thick. Compared to the diamond detector, more beam is lost and scattered with the 

use of SEMs instead of a diamond detector. 



 

 The last important aspect to take into consideration for using a diamond detector is 

leakage current. Leakage current comes from the fact that the gem diamond is a semiconductor. 

The leakage current of a diamond detector occurs due to the limited electric conductivity 

intrinsic in semiconductor materials. With this in mind, the two kinds of leakage current that 

amount to the overall leakage current are due to the bulk and surface properties of the material. 

Bulk current is caused by the free charge carriers that are thermally energetic enough to cross the 

energy band gap of the diamond. Surface leakage current is attributed to the manufacturing 

process, measurement methods, electrode conductivity. As mentioned earlier, a high signal to 

noise ratio is necessary for obtaining a better current signal that can be measured. In order to 

achieve a high signal to noise ratio, the leakage current that comes from the diamond detector 

would have to be reduced.  

Measurements & Instrumentation 

 The readout hardware instrumentation that was necessary for having the capability of 

measuring in the picoamp range was the Keithley Model 6517B Picoammeter. The picoammeter 

Figure 4: Here is an image of the 

several components that make the 

SEMs work. 



has the capabilities to supply a voltage (bias voltage needed to operate a diamond detector), 

measure in the picoamp range (important for the precise measurements that needs to be done for 

the diamond detector), measure the temperature & humidity of the area in which measurements 

are being done (this can be taken into account for when measuring current from a diamond 

detector), and the picoammeter can communicate with a computer via the General Purpose 

Interface Bus (GPIB) port. 

 

 

 

  

 

Figure 5: These two images show the front and back of the Keithley Picoammeter 

that was used in acquiring data. The IEEE-488 port is the same as the GPIB port. 



In regards to collection of data, a GPIB to USB converter was used for communication 

from a computer to the Keithley instrument. The GPIB to USB converter was a Prologix GPIB-

USB 3.12 Controller. To begin the communication from computer to the Keithley instrument via 

the specific GPIB commands made for the Keithley instrument, a terminal had to be used in 

order to verify that the commands were being read by the Keithley machine and that the Keithley 

machine returned the data or operated how it should have. The terminal I used to verify this was 

Tera Term. After I verified the communication with the terminal, I set out to use PyVISA, which 

is a Python package that enables the programmer to control measurement devices with a GPIB 

interface to run a program to collect data from the Keithley machine and graph plots of the data. 

Some of the technical specifications that were paid close attention to were the baud rate, carriage 

return (CR) & line feed (LF), the configuration of the DIP switch for turning on the Controller 

mode (allowed controller to listen and talk to Keithley machine), and setting the address of the 

GPIB controller to the address of the measurement device that it would be communicating to. 

The baud rate is important to set for the terminal or program when communicating from the 

computer to the Keithley via the GPIB controller. The baud rate is data transfer rate and it refers 

to the number of signal or symbol changes that occur per second. These signal and symbol 

changes come from the fact that a command is transferred into ASCII characters, which are then 

processed and sent from the GPIB controller to the Keithley machine; the Keithley machine 

acknowledges the command and acts upon it to return back to the program what it was asked to 

do. The carriage return (CR) & line feed (LF) also had to be set in PyVISA and in the terminal to 

work properly because they are both necessary to let the Keithley machine know that the 

command sent from GPIB has terminated and is ready to act on the command sent. In addition to 

setting DIP switch #6 so the controller could talk and listen to the Keithley machine, I also had to 



make sure to tell the controller the address that the Keithley machine was set to, which was at 

address 27, so that the GPIB port could properly transfer data from the computer, to the 

controller, to the Keithley machine. 

 

Strontium-90 Radioactive Source 

 In order to test the functionality of the diamond detector without placing it in the 

Switchyard beamline, a Strontium-90 Source had to be used. Strontium-90 undergoes beta decay 

and radiates beta particles. With a decay energy of 0.546 MeV, the distribution of that energy 

was among an electron, an anti-neutrino and the Yttrium-90 isotope. The emission of the 

electron, which is beta decay, imitates a charged particle that can hit the diamond material and 

cause a current signal. Beam pulses were simulated with the Strontium-90 source to see an 

increase and decrease in the current signal from the diamond detector. 

Figure 6: Prologix GPIB-USB 3.12 

Controller  



  

Current Signal from Diamond Detector 

 

 

 

Figure 7: Strontium-90 Source 

used to test the diamond detector 

for a current signal. 

Figure 8: Here is a plot of data that taken from the diamond detector. As seen from the graph, the 

leakage current levels off as a function of time from when the bias voltage is first applied. 



 

 

 

Fermilab Test Beam Facility & Calculations 

We tested the diamond detector at the Fermilab Test Beam Facility (FTBF), where there 

is open access to test beam for particle detectors. Through our experience we learned a very 

valuable piece of information that assisted us in achieving a very high signal to noise to ratio. 

Before placing the diamond detector in the beamline after obtaining successful data 

through applying the Strontium-90 source, an operational readiness clearances (ORC) review had 

to be made by ES&H to ensure that the process for placing the diamond detector in the beamline 

was safe. We had to explain the purpose for placing the diamond detector in the beamline, its 

impact on the radiation environment and address electrical and safety hazards. 

Figure 9: Here is a plot of data with a Strontium-90 source being applied on the diamond 

detector for several 3 minute increments. As seen from the graph, there is an increase and 

decrease in the current signal measured as to when the Strontium-90 source was applied and 

taken off the diamond detector. 



 

 

Figure 10: The diamond 

detector was mounted on a 

scintillator when placed in the 

MTEST beamline to be tested 

if a current signal is read when 

the beam goes through the 

diamond detector.  

Figure 11: This was the setup 

from inside the control room. An 

RG-58 cable went from the 

control room to the enclosure 

where it would then be connected 

to the diamond detector to apply 

the high voltage and readout the 

current signal. The circuit for 

applying and reading out the 

current was in the box for safety 

purposes. 



Two essential calculations that were needed to ensure that it was safe to place the 

diamond detector were the RMS scattering angle and the power loss (interaction length). The 

RMS scattering angle calculation is obtained through using relativity and a theta RMS equation, 

which is meant to estimate scattering through small angles. The interaction length is simply 

estimated through knowing the nuclear interaction length and the thickness of the object that is 

being placed in the beam. The nuclear interaction length and radiation length (needed for 

scattering angle calculation) are found from a group that compiles properties of elements and 

particles called the Particle Data Group. The interaction length is simply the thickness of the 

diamond divided by the nuclear interaction length of the diamond (24.38 cm), so the interaction 

length is 0.4%. Here is the calculation for the RMS scattering angle that I did on python, which 

was around 6 microradians:

 



 

 

 



 

 

 

Data & Results 

 Unfortunately, due to an error in our instrumentation, we did not achieve a high enough 

signal to noise ratio so that we could see the current signal from the diamond detector when a 

beam pulse went through the diamond material. In other words, we could not detect the beam 

with the diamond detector due to our cabling for the diamond detector. As shown by Figure 12 

and 13 (two different instances in which the beam hit the diamond detector), during a 15 second 

data acquisition when an increase in the current signal should have happened at the four second 



mark, we picked up only noise. The reason we know we picked up noise was due to the increase 

of magnitude from previously measuring in nanoamps to measuring in milliamps, a really 

significant difference when it comes to reading out a current signal from a diamond detector. 

 

 

 

 

 

Figure 12: Noise picked up from the diamond detector. The current signal should have increased 

around the four second mark when the beam went through the diamond detector. 

Figure 13: Noise picked up from the diamond detector. This is at different time than when the 

plot in Figure 12 was taken. The current signal should have increased around the four second 

mark when the beam went through the diamond detector. 



Improvements 

 Like mentioned earlier, in order to carry out a high signal to noise ratio, we needed a 

better Faraday cage so the diamond detector wouldn’t pick up noise from outside electric fields. 

So in order to fix this issue, we set out to use two coaxial cables for better shielding that would 

pick up less noise. As shown in Figure 14, the instrumentation fix we made dealt with how we 

initially set the high voltage and readout for the diamond detector. At first, we had one RG-58 

cable in which the center pin carried the high voltage to the diamond detector and the outer 

shield of the RG-58 cable carried the current signal from the diamond detector to the Keithley 

machine to be read. This set up acted as an antenna, which therefore picked up noise. To obtain a 

high signal to noise ratio, we used two RG-58 cables to carry both the high voltage and the return 

of the current signal. Both were carried through the center pin of each RG-58 cable where the 

outer shield was grounded so that less noise would be picked up and therefore give us a high 

signal to noise ratio. As a result, we went to try the new instrumentation at the Fermilab Test 

Beam Facility (FTBF) again. We got good results in that our signal to noise ratio was high 

enough to be measuring in nanoamps again, shown in Figure 15. We verified if this set up at 

FTBF worked in detecting charged particles by applying the Strontium-90 source, and we saw an 

increase in the current signal, which meant that our new instrumentation was successful for 

reading out a current signal. 

 

 



 

 

 

 

 

 

Figure 14: Our first set up (as shown in the left image) for supplying the high voltage and returning 

the current signal was with only one RG-58 cable. The high voltage was supplied through the 

center pin the and the return of the current signal came from the outer shield of the same RG-58 

cable. This allowed for a lot of noise to be picked up. Our second set up (as shown in the 2 right 

images) for supplying the high voltage and returning the current signal was with two RG-58 cables. 

The high voltage was supplied through the center pin of one RG-58 cable and the return of the 

current signal came from the center pin of the other RG-58 cable. Both outer shields of the RG-58 

cables were grounded so a higher signal to noise ratio would be produced. 

Figure 15: With the new instrumentation, we were measuring current in nanoamps again, as 

opposed to milliamps 



  

 

 

Conclusion & Future Directions 

 In conclusion, we are still looking to discover whether the diamond detector can measure 

the micro-bunch structure of the beam. The readout hardware and instrumentation has to be very 

fast and precise in how it’s made to readout the current signal. This leads to a rise in costs for the 

diamond detector as getting the proper instrumentation and engineers to design a better Faraday 

cage and readout hardware will amount in the setup of the diamond detector being more 

expensive. We are also looking to discover the dynamic range of the diamond detector. For 

example, can it read the intensity from a few hundred particles up to 1013 particles? Since the 

current signal should increase or decrease linearly, depending on the intensity that is applied to 

the diamond material, we predict that the diamond detector should have a large dynamic range. 

Figures 16 & 17: Here is how the box differed from the initial set up with only one RG-58 cable in the left 

image to the second set up with two RG-58 cables in the right image. 
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