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I. INTRODUCTION

In 1914, J. Chadwick used a magnetic spectrometer and photographic plates to measure

the spectrum of electrons from β radioactivity. Contrary to earlier predictions, the data

showed a continuous spectrum of β electrons[1]. This was further puzzling when C. D.

Ellis and W. A. Wooster found that the mean energy in the β decay was only 1/3 of the

energy expected[2]. In December of 1933, W. Pauli released a letter proposing a companion

particle that would account for the rest of the energy missing from the decay. He called it the

neutron because of its need to be electrically neutral and carry a spin 1/2. This name was

changed to neutrino by Enrico Fermi in 1933 after J. Chadwick discovered a much larger

neutral particle which he named the neutron (and stayed to become the neutron known

today). There was strong speculation over whether or not these neutral particles could be

experimentally confirmed due to their inability to exhibit electrostatic attraction.

It was not until 1945 that B. Pontecorvo noted that theoretically an electron neutrino

can impact a Chlorine-37 atom and transform it into an Argon-37 atom[3]. This was not

able to be confirmed experimentally at the time. Then in 1953, Cowan and Reines proposed

and tested using liquid scintillation to detect neutrinos, and in 1956 announced they had

discovered the electron neutrino[4]. A year later, Lee and Yang postulated that neutrinos,

unlike their charged particle counterparts, were purely left-handed particles. This meant

that weak interactions could violate parity[6].

In 1962, the muon neutrino was detected[6]. A few months later, Maki, Nakagawa and

Sakata theorized the idea that these two neutrino types could mix and readily oscillate from

one type to another. This could only be theoretically possible if both neutrino flavors had

nonzero mass[7]. This was further developed when R. Davis set up his famous experiment in

the Homestake mine, utilizing a 100,000 gallon tank of cleaning fluid to study the solar neu-

trino flux. This experiment measured a value that was 1/3rd the expected value. This later

lead to the interpretation of neutrino oscillations. In July 2000, the DONUT Collaboration

experimentally confirmed the existence of a third type of neutrino, the tau neutrino.

As the Standard Model developed, it predicted that the three neutrino flavors must be

massless. Since there are no right-handed neutrinos or left-handed anti-neutrinos, then it

could not pair with the Higgs field to give the particles mass. If neutrinos were to have

mass, and no right handed neutrinos or left-handed anti-neutrinos were added to the Stan-
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dard Model, then the model becomes non-renormalisable. When the Super-Kamiokande

collaboration announced they had detected evidence for neutrino mass, it gave a palpa-

ble signal that there is physics beyond the Standard Model[8]. This new breaking of the

Standard Model has fueled an increased interest in further research in neutrinos. Fermi Na-

tional Accelerator Laboratory is continuing its long history of world-leading neutrino physics

research[9].

II. LIQUID ARGON TIME PROJECTION CHAMBERS

In order to achieve transformative discoveries, Fermi National Accelerator Laboratory is

preparing the Deep Underground Neutrino Experiment (DUNE). Neutrinos will be created

at Fermilab’s Long Baseline Neutrino Facility (LBNF) and sent 800 miles under the Earth’s

surface to a detector at the Sanford Underground Research Facility in Lead, South Dakota.

FIG. 1. Long Baseline Neutrino Facility Layout

This detector is a Liquid Argon Time Projection Chamber (LArTPC) detector. LArT-

PCs’ ability for 3D imaging, particle identification capabilities, and calorimetric energy

reconstruction makes it a great detector to study neutrinos. Since neutrinos are electrically

neutral, they must be indirectly, from the byproducts of their interactions with the detector.

In order to prepare for DUNE’s data analysis, set to begin in 2022, an experiment named

Liquid Argon Time Projection Chamber In A Testbeam (LArIAT) is being used to char-

acterize LArTPC’s. By experimenting with a smaller LArTPC, we can utilize the lessons

learned to the much larger DUNE. While LArIAT holds roughly 0.76 tons of argon, DUNE’s

LArTPC will hold 70,000 tons.
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Housed at the Fermilab Test Beam Facility (FTBF), a tertiary beam of pions, pro-

tons, muons, kaons, electrons, and their respective antiparticles are sent through a set of

wire chambers, bending magnets, cherenkov radiation detectors, and Time-Of-Flight (TOF)

counters before entering the LArTPC.

FIG. 2. LArIAT Beamline Diagram

As the particle beam enters the beamline, shown in Fig 2, it will pass through four multi-

wire proportional chambers that track the trails of gaseous ionization to detect charged

particles and photons, providing their location and trajectory. Using this information along

with the difference in angles of the two dipole magnets allows for the reconstruction of

particle momentum before entering the time projection chamber.

Additionally there are two time of flight (TOF) counters that allow a determination of

the particle speed. Plotting the time of flight versus momentum allows for the separation

of deuterons, protons, and kaons, while pions, electrons, and muons still present similar

characteristics, shown in Fig 3. The aerogel Cherenkov counters, as well as the muon range

stack, allow for the separation of muons and pions.

With these beamline detectors, it is possible to have presumptive particle classification

before the particle beam reaches the TPC, however, there is great interest in the ability

to classify particles without the beamline instruments. Neutrino experiments do not utilize

beamline detection, and can only rely on TPC data. The goal of the project described in this

paper is to test and quantify the effectiveness of a Convolutional Neural Network to classify

particle events in a LArTPC. By developing machine learning software, a proof of concept

can be achieved by training a neural network to identify different particle interactions and
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characterize each particle.

FIG. 3. Time of Flight vs. Momentum

Classifying particle interactions inside a detector is an extremely important need for high

energy physics experiments. LArIAT is placed in a well understood beam of charged par-

ticles; by utilizing the beamline instruments, classification can be made for particles before

they enter the LArTPC. By knowing the classification of the particles entering the TPC,

training sets can be created for use by machine learning software. The neural networks

trained on LArIAT with beamline information could aid in understanding how neural net-

works could be used for DUNE data where there is no beamline information.

III. DEEP LEARNING

The traditional neural network used in high energy physics analysis is the multilayer

perceptron (MLP) [11]. The MLP consists of an input layer that takes in the available

information, which is passed to one or more hidden layers, and then moved to an output

layer. The purpose of the MLP is to approximate a function f : Rn → Rm, where n is the

dimensionality of the input −→x and m is the dimensionality of the output
−→
f . With an MLP

each layer is fully connected the the next, shown in Figure 4.
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FIG. 4. Graphical representation of a MLP

Each node, with the exception of input nodes, is a neuron with a nonlinear activation

function. A nonlinear activation function mimics the frequency of action potentials of bi-

ological neurons in the brain. These layers are connected with a certain weight wij, which

describes the amount of influence that the input node will have on the layer. In supervised

learning, the MLP is presented with examples where both the input and output are known.

This known output is what is known as ground truth. A calculated loss can be made between

the MLP output and ground truth. This difference in error can then be used to calculate

a gradient as a function of the weights and bias. This is known as a back-propagation al-

gorithm. Using the gradient, changes can be made to the weights and bias to minimize the

loss. This, in a sense, is the MLP ”learning” to correct for its errors[12]. While MLPs are

a great introductory neural network model, there are problems with the MLP which make

it ill-suited for the LArTPC experiments. First, when fed a large amount of raw inputs, it

scales poorly. For image analysis, the input to a layer is a m x m x r image where m is

the height and width of the image and r is the number of channels[13]. If you have a small

image of only 32×32×3 dimensions, a single fully-connected neuron in the first hidden layer

of a MLP would have 32× 32× 3 = 3072 weights. While this is manageable, if you move to

a larger image, the fully connected layer does not scale. If you had a 200 × 200 × 3 image
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for example, you would have 120,000 weights. The number of nodes needed in a layer for

it to approximate complex functions increase beyond appropriate computing power. This

can be mitigated with more hidden layers, each with fewer nodes, however it then becomes

increasingly harder to train.

IV. CONVOLUTIONAL NEURAL NETWORKS

There have been many advances in the field of computer vision that has allowed for the

optimization of architectures with multiple layers. These structures have had increasing

success in image recognition and language processing. This has lead to advancements and

the development of convolutional neural networks.

Convolutional neural networks were inspired by studies of the visual cortex of animals[14].

A study conducted by Harvard Medical School on macaque and spider monkeys found three

classifications of cells in the visual cortex: simple, complex, or hypercomplex. The visual

cortex creates sub-regions in the visual field called receptive fields. The simple cells look

at a receptive field and are sensitive to straight, edge-like, features, while the complex and

hypercomplex cells look at groupings of simple cells. These cells can then cover the entire

visual field by tiling together the receptive fields. This is modeled in a convolutional neural

network by a series of convolutional layers that are sensitive to a specific set of features

from the input image and then pooling layers that will exploit dimensionality reduction and

translational invariance. This is widely considered among the most promising architectures

to mimick the mammalian visual cortex.

This is the advantage of a convolutional neural network over a traditional MLP. The

MLP network’s fully connected layers are not ideal for image classification because it does

not factor in the spatial structure of the image. Regardless of where the input pixels originate

from in the image, the MLP network will treat them with equal standing. A convolutional

neural network utilizes spatial architecture to understand the spatial structure of the image,

making it ideal for image analysis and classification. A successful CNN will take the local

features of an input and convolve receptive fields using filters. The outputs are then sub-

sampled and filtered repeatedly, creating a classification output. This particle classification

output will serve to help differentiate tracks and clusters of particle interactions in liquid

argon TPCs.
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Each convolutional layer is characterized by its size and number of maps. The implemen-

tation of the CNN is being developed using the TensorFlow framework[15], using the Keras

modular library[16]. TensorFlow is an open source software library that utilizes a data flow

graphical representation to design multidimensional data arrays to communicate between

neural network nodes.

FIG. 5. An example of a TensorFlow graphical model

Keras is a deep learning library that can be run on top of the TensorFlow framework.

The library is designed for fast prototyping on both CPU and GPU implementation.

V. CONCLUSION

Our future intent is to build a convolutional neural network that can be trained on

known particle data in LArIAT to test the accuracy of particle classification. Using recent

advancements in computer science, we will test the viability of using CNN’s for data analysis.

By creating training sets from LArIAT data, we can train our CNN to correctly identify
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particle interactions in liquid argon. This architecture can then be used for other liquid

argon experiments, such as DUNE and MicroBooNE. Further documentation will follow

with relevant findings.
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