Brandon White
CSCI 390
July 26, 2016

Over the course of the summer and the duration of my time with the Summer Internships
in Science and Technology program at Fermi National Accelerator Laboratory (Fermilab), I was
part of the Computer Security Team (CST). I was assigned in March 2016 to work with the
Computer Security Architect, Jason Ormes, on the Beholder security program. Beholder is a
security software that has been developed at Fermilab by Jason over the past three years. A
homegrown monitoring system for cybersecurity prevention and detection which spans an array
of servers and operating systems, Beholder takes input from many different cybersecurity
streams, detectors, and networking protocol analysis programs in order to facilitate the effective
blocking of unauthorized connections and software. The software also blacklists malicious
Uniform Resource Identifiers (URIs) from being accessed or responded to, while maintaining
concurrent monitoring of systems inside the Fermilab domain. Over the course of Beholder’s
development, Jason had not produced a consolidated way to view or monitor the statistics
produced by the application. My task over the summer was to create a web page for Beholder
that displayed consolidated monitoring statistics that were formatted in such a way as to be
pleasing to the eye as well as useful to the CST in future cybersecurity operations.

The structure of the CST is that of a small task-focused group, working in close
proximity to other small task-focused teams assigned to other projects in order to facilitate
communication. The team is led by Joe Klemencic, assisted by Arthur Lee who together head up
operations conducted by Jason Ormes, Greg Cisko, and Wayne Baisley. Each member of the
CST is responsible for a different area of expertise, while also having a rotating duty schedule
that consists of a “Primary” and “Secondary”. Together throughout the week the Primary and
Secondary act as Fermilab’s cybersecurity quick reaction force. Wayne is responsible for
hardware management which includes the setup, maintenance, and update of the servers
necessary to the operation of Beholder and other CST software applications. Greg is the Incident
Response Coordinator, responsible for the proper handling of cybersecurity related occurrences
in the daily operations of Fermilab as well as the subject matter expert on issues relating to the
security of systems running Windows operating systems. Jason, as the Computer Security
Architect is responsible for the development and debugging of software applications so as to
process new emerging new cybersecurity threats and automate the security analysis of systems
within the Fermilab domain. The managerial staff comprised of Joe and Arthur assist in finding
new vulnerabilities, discovering emerging threat streams, and writing new detector software to
be integrated into the Beholder monitoring suite, while simultaneously coordinating the
operations of the CST with higher administrative offices at Fermilab.

The CST exists outside of the rest of the Computing Division at Fermilab, residing
directly under the management of the Chief Information Officer in order to facilitate the
implementation of effective computer security techniques from the top down in the Fermilab
administration structure. I found the organized, detached, small focus group approach to
computer security to be an effective method to establish an easily enforceable cybersecurity
policy. In a small group environment such as that of the CST, communication and cooperation
between members is easy and efficient. This promotes an increased response time to
cybersecurity incidents and easier adaptation to emerging threats.



Development of Beholder is done in Ruby 2.2.4 utilizing the Rails 4.2.6 framework on a
dedicated host server and associated powerful database server, with a large cadre of necessary
software included via gems and packages. Some of these include Redis, an in-memory data
structure used as a database cache, and Sidekiq Enterprise, a software that supports the running
of multithreaded asynchronous worker scripts written in Ruby.

Also required beginning with my redesign of the user interface was a large amount of
Javascript, extensively utilizing the Jquery library along with Ajax calls and various other
libraries in order to facilitate the loading and rendering of data. Beholder monitors for various
new cybersecurity events which have an Intrusion Detection Systems Signature (IDS Signature).
A specific IDS Signature is indicative of a likely detection of malicious attack against Fermilab
systems which will in turn trigger an appropriate response. Also performed under the watch of
Beholder are scans such as NESSUS Vulnerability Scans. These check for a multitude of
different software vulnerabilities such as poor passwords, DDOS attacks, system
misconfiguration, and penetration attempts. Further performed are Netsparker Web Application
Security Scans which are responsible for the scanning of Fermilab web servers, Splunk log
queries for security analysis, and NMAP port scans which check for ports that are open to
connections from outside the Fermilab domain. Finally, all of this information is summarized by
the new web application user interface that I was responsible for building utilizing a combination
of Ruby, Javascript, HTML, and Bootstrap CSS with supporting API integration with various
systems for data collection.

This user interface page is structured into a modular system in order to effectively display

information useful to the monitoring of Beholder’s daily operations. It is also useful to the
operations of the Primary and Secondary over the course of the week. Each module is constantly
refreshed with new information on set time intervals via Javascript, making the dashboard a near
real-time display of Beholder’s machinations. Furthermore, the modules are coded with
Javascript so that when new data comes in that requires immediate attention, the module
pertaining to that data changes position on the screen and is displayed first in order to draw
attention to itself. After a set time period, the module will return back to its original position in
the module hierarchy displayed on the screen by default. There are currently nine separate
modules with more currently in the design phase to be finished by the end of my internship on
August 19th.

In the standard display, with all modules in their default positions, the most important
module is the Scanner Farm Status module. This module, styled with Bootstrap CSS as are the
rest of the modules, maintains a display of the total number of systems currently being scanned
by the Voyager server and all six of its worker nodes. Three of these nodes are within Fermilab’s
network, and scan for vulnerabilities that exist inside the domain. Conversely, the other three
nodes exist in the “demilitarized zone” outside the Fermilab domain, allowing for scans of the
Fermilab domain from a “rest of the world” point of view. On both sides, production and
DEEMZ, these numbers are further broken down into the number of new scans and rescans. A
new scan is conducted whenever a new device is detected on the network, usually within seconds
of the device being connected to the Fermilab domain. Rescans are conducted on devices which
have not left the network on a frequency of every three days. Normally all numbers are displayed



in green. However, should the number of scans drop below 25 at any given time, the text is
changed to red in order to alert the operator that there is likely something broken. This module
also has a dropdown menu to select between the numeric view and the historical view. When the
historical view is selected, Javascript will on the fly change the data displayed in the module to a
line chart rendered by the Google Charts API displaying the number of scans per hour over the
last twenty-four hours. This has proven useful multiple times already as an easily identifiable
indicator that there may be an issue with the proper operation of the scanner farm. Data
acquisition for this module required me to familiarize myself with the Ruby API for the Splunk
search and analytics software and ended up requiring a fair bit of debugging in order to work
properly. Issues included connecting to Splunk in the first place and then ascertaining the
appropriate logic in which to issue a very specific query to Splunk then in obtaining a usable
dataset to be processed by an asynchronous Sidekiq worker for its content.

The next module in order is the Event Summary module. This module consists of
Bootstrap datepicker fields that allow the selection of a date range with a default value of the last
seven days. Utilizing this date range, the Beholder database is queried for events that have been
created in this time frame in order to produce another Google rendered chart depicting all the
various types of cybersecurity events that have occurred and the percentages associated with
those types during the time specified. Once again, Javascript detects any change in the date
range specified by the Bootstrap datepickers and then queries the database again through a series
of jQuery and Ajax calls for data pertaining to the updated range. Some issues that occurred
during the implementation of this module included implementing the datepickers correctly in the
first place while posting the information contained in each field to the Ruby controller through
Javascript correctly. Later issues occurred after implementation of manipulation of the module
order, and pertained to Javascript binding to the datepicker fields at a time when that part of the
DOM had not yet been rendered. This was due to the HTML being stored in a Javascript hash at
the time for rendering and the Javascript attempting to pull values from datepicker fields that
either did not exist, or outdated values in those fields.

Following this module in the default order is the Sidekiq Status Center. This module
utilizing the Sidekiq API written in Ruby allows for monitoring of the Sidekiq Enterprise queues
and job statuses. This module follows a similar styling to the Scanner Farm Status module in that
during normal operation, all data is displayed in green. However, when Sidekiq jobs begin to
hang, block, or fail all text within the module will turn red in order to alert the Beholder operator
to the issues at hand. Currently Beholder runs approximately fifty-thousand Sidekiq jobs per day.
This makes Sidekiq invaluable for writing short Ruby scripts for jobs that need to perform
asynchronously in the background frequently while allowing Beholder to continue normal
unblocking operation. This invaluability resulted in Fermilab upgrading from the free version of
Sidekiq to Sidekiq Enterprise during my internship tenure, which took Sidekiq from one process
running twenty-five threads to eight simultaneous processes cooperating in a swarm, each of
which runs with up to twenty-five simultaneous threads. This allows Sidekiq to have a monstrous



throughput which is necessary for the speed at which Beholder operates. This module was
actually relatively simple to implement. The only quandary which required a healthy amount of
attention was during the upgrade from Sidekiq to Sidekiq Enterprise. This was due to things such
as the enterprise version having built in support for UNIX style cron jobs, as well as slightly
different configuration and initialization procedures.

Next in line is the Recent Black Hole Events module. This module contains a table that
depicts the last six hours of events which have been “blackholed”. When a DNS request resolves
to, or an HTTP response is sent out from a system in the Fermilab domain to a blacklisted target
location, that system is instead redirected to a safe Fermilab owned page which displays a
warning that the site being accessed is blacklisted and that the event has been logged. This
effectively blocks systems from not only accessing malicious web pages, but also serves to stop a
malicious system from ever receiving a response from a probe of Fermilab’s cyber security
defenses. This module also contains a button labeled “Geolocation”. When clicked, this button
opens a modal Bootstrap window containing a Google Charts rendered map of the Earth.
Displayed on this map is the location of each of the Black Hole events contained in the table,
geocoded by IP address using a free IP geocoding service with a Ruby geocoding gem on
GitHub. While quite interesting, this location data does have one weakness in that it cannot
geolocate an address that originates from behind a proxy server. This module was interesting to
implement in that creating the geocoding functionality appealed to me due to my background in
Geospatial Information Systems. The most difficult part of this creating this module was in
querying the Beholder database for the last six hours worth of Black Hole events. This was due
to the fact that we had to query based not just on time in one field, but on time, event, and the
IDS signature in a complicated join scenario. Also of some note in difficulty was that while
writing this module, this was the first time utilizing Google Charts in the Beholder project since
its inception. Figuring out how to convert a Ruby array of information into a Javascript array
formatted in a way that Google’s API could understand took a good chunk of time to ascertain.

The next module in the lineup is a special case of module. Depending on conditions, this
spot is either taken up by the Webscan Targets module, or the Current Web Scans module. When
no current scans of HTTP servers at Fermilab are under way, the Webscan Targets module is
displayed. This renders a table containing the upcoming schedule web scans, including the
hostname, IP address, port to be scanned, and a column to monitor if the scan has occurred yet.
When a scan of an HTTP server occurs, the module is replaced instead with the Current Web
Scans module. This displays the time that the scan began at, along with the IP address and the
target of the scan. This module is useful as many web scans occur in batches based on the time
before a rescan of a particular node is due. The dynamic property of this module implementation
allows for real-time monitoring of the status of the NMAP and Netsparker scans on the plethora
of HTTP servers that Fermilab is running inside the domain at any given time. These two
modules were quite simple to implement in that there was only a single query for each of them



due to the way that Beholder handles the processing of HTTP server scans through its various
systems.

Following the Webscan Targets and Current Web Scans module is the Tissue Status
Center. This allows for monitoring of tickets related to another Fermilab system that handles the
blocking of computers that violate the cybersecurity policies in place here. This is useful to the
Beholder operator in that sometimes Beholder is responsible for the creation of a Tissue event.
These Tissue events may require immediate action by a member of the CST in order to respond
to the variety of cybersecurity needs that arise on a daily basis. This module is implemented as
another table that uses the API created by Fermilab’s developers assigned to Tissue in order to
gather data for display. Creation of this module, which required coordination with the Tissue
developers, was a great insight into the interoperation of the development teams here at
Fermilab. My implementation of this module was easy in that all that was required was
collaborating with those developers, and having them slightly modify their JSON output in a way
so that it could be accessed and utilized inside of Beholder.

The next module is titled Recent Webscan Information. This module takes the results of
the web scans conducted by Netsparker and displays them color coded based on severity of the
vulnerability discovered. Of the five categories of severity numbered one through five, one being
delineated as a critical vulnerability and symbolized by turning that row of the table red. A level
two vulnerability is categorized as important symbolized orange, and a level three is classified as
medium symbolized as yellow. A medium vulnerability may be something such as an outdated
version of SSL or an Open Client Access Policy. A critical vulnerability on the other hand would
be a Confirmed SQL Injection attack or an out of date Content Management System. As was the
case with the other modules relating to the status of the Web Scans being run by Beholder,
implementation of this module was simple in that data acquisition only required a single simple
query to obtain an informative dataset.

The final module that I designed for Beholder was the Netflow Information module. This
module is responsible for keeping track of the total business internet traffic that crosses the
border router inbound and outbound from Fermilab. This traffic does not include scientific data
feeds from CERN or other scientific institutions as the volume of that data is far too large and
causes too many false positives for the CST to manage. These numbers are broken down into
inbound and outbound values, which are then broken down into minutely, hourly and daily
values. This module also has the ability like the Scanner Farm Status module to switch to a
historical view, in which data is sent to Google to be rendered as a line chart depicting the
netflow information for the previous seven days. This module required some work to implement.
Data acquisition starts on the Ebb and Flow servers, which are constantly fed netflow
information through port 50001. By utilizing a script written by Jason, this information is
continuously parsed on a by-the-minute basis and imported into Beholder for use. This data
enters Beholder as a number of bytes, which are then converted to megabytes for easier reading.



Total traffic inbound and outbound related to normal day to day business activities at Fermilab
averages between two and four terabytes daily.

On July 15th, I gave a presentation at the weekly Computer Security Board meeting in
which I demoed the capabilities of the page I had designed. While giving briefs and presentations
in front of higher echelons of leadership is not a new experience to me, it was a good experience
to do it in a different environment than I had grown used to in the past. The entirety of the
presentation and all the associated questions lasted around twenty-five minutes and was very
well received by both leadership of the CST as well as that of the Computer Security Board.

This internship has been an extremely informative learning experience, allowing me to
gain knowledge and extensive experience with a variety of operating systems, languages,
networking protocols, and software packages, while simultaneously providing for undergraduate
attendance at twice weekly lectures relating to particle physics topics such as Neutrino Mass
Ordering, Gravitational Waves, and Particle Physics at the Compact Muon Solenoid located at
CERN. Fermilab has a very capable cybersecurity presence in the form of the CST and is
unsurprisingly without equal in the ability to provide students hands on experience with fantastic
hardware and software suites managed by teams of extremely skilled professionals, while still
providing an opportunity for students to produce meaningful work. I cannot understate the
knowledge and professionalism of the employees here as from day one I knew that I would have
to step up my own self learning in order to even begin to understand the daily machinations here
and Fermilab and below the surface in the Beholder software.



