Flash Finding Efficiencies for PDK events $p^+ \rightarrow K^+ \bar{\nu}$

Kevin R. Wood

kevin.wood@stonybrook.edu

08/03/2016

Outline

- Flash finding reconstruction efficiency
 - For proton decay (PDK) events, we rely on flash finding for t₀ determination which enables 3D reconstruction
- ³⁹Ar flash finding rates
 - $^{39}\mbox{Ar}$ decays yield light which can be misidentified as the $t_0\mbox{-defining flash}$
- Setting the threshold
 - Cosmogenic background to PDK considerations

Flash Finding Efficiency

- A flash is a reconstructed object from the photon detector system
- Should correspond to a single light source within the detector $10K \ n^+ \rightarrow K^+ \overline{V}$ events
 - Time
 - Light yield
 - Approximate position
- Observe some low PE flashes (much like ³⁹Ar flashes)

Flash Finding Efficiency

10K $p^+ o K^+ \overline{
u}$ events

- The further the PDK event is from the optical detectors, the less PEs we reconstruct due to attenuation
- The higher our flash finding threshold, the more of these events we miss

Flash Finding Efficiency

³⁹Ar Flash Finding Rates

- Why raise the threshold if we lose efficiency?
 - We must also think about purity
- ³⁹Ar decay produces light in the detector which can be reconstructed into flashes

³⁹Ar Flash Finding Rates

- Rates are suppressed an order of magnitude by increasing the threshold by ~4 PE
- The question is: which threshold is appropriate for PDK flash finding given these rates and efficiencies (on slide 5)
- These "false-flashes" are an issue for PDK cosmogenic backgrounds

Cosmogenic Background

 Cosmic muons can interact in the rock and produce a neutral kaon which enters the detector before undergoing charge exchange, turning into a K⁺, and mimicking this proton decay channel

- Sheffield group has been studying this background using MC information
- Energy deposition at the edge of the detector is a good handle to cut off of...
- ... if you have the right t₀

Cosmogenic Background

- If an ³⁹Ar is misidentified as the t₀-defining flash for one of these events, the track can seemingly get pulled into the fiducial volume (drift direction)
- How many of these backgrounds do we expect in 400 kt-years:
 - Without fiducial cut?
 - With fiducial cut?
- Then, what threshold should we set on flash finding to keep this number ≤ 1 event/400 kt-years?
- Finally, what is the efficiency at *this* threshold?

Cosmogenic Background

Charged Kaon Spectrum, 10⁸ filtered muons

Background Candidates

- 0.05 Hz muon rate per 10kt module @4850ft.
- Out of 10⁸ muons, 1 passed all cuts except fiducial (doesn't pass fiducial)
- So the rate of cosmogenics we need a fiducial cut to reject is ~ $5{\times}10^{-10}~{\rm Hz}$

Setting the Threshold

- Back of the envelope: $0.05 \cdot 10^{-8} \cdot (10 \cdot 365 \cdot 24 \cdot 60 \cdot 60) \cdot 4 = 0.63$ events/400kt-years
- Poisson analysis gives ≈ 8 events/400kt-years (90%)
- ~10PE gives an order of magnitude suppression

Summary

- We have great flash finding efficiency across the entire drift distance at a reasonable threshold
- The threshold was set to control the number of flashes we reconstruct from ³⁹Ar
 - Such flashes are problematic for rejecting cosmogenic backgrounds if they occur too frequently

