ReA Operation Experience over Several Years

Qiang Zhao

Michigan State University

2017 TESLA Technology Collaboration, East Lansing

MICHIGAN STATE

Outline

- Introduction
 - Coupled Cyclotron Facility
 - ReAccelerator (ReA)
 - ReA3 features
 - 7 β=0.041 QWRs, two cryomodules
 - 8β =0.085 QWRs, one cryomodules
- Resonator operation experience
 - Resonator field gradient setup
 - Turn on problems and solutions
 - Stable operation issues and resolutions
 - Recent improvements
- Summary

Coupled Cyclotron Facility at NSCL

ReAccelerator (ReA)

CM1

CM2

CM3

RFQ

EBIT/S

JENSA 2006 design started 2010 RFQ commissioning CM1 & CM2 installed 2011 first beam accelerated **ReA6-12** through CM1 & CM2 2014 CM3 installed 2015 operation for user experiments **ReA6 under construction** ReA12 under design

 $\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

ReA3 B=0.041 Cryomodules

CM1: one β=0.041 QWR two solenoids

CM2: six β=0.041 QWRs three solenoids

A total of 7 β =0.041 QWRs MICHIGAN STATE UNIVERSITY

5

ReA3 B=0.085 Cryomodule

CM3: eight β=0.085 QWRs three solenoids

A total of 8 β =0.085 QWRs

6

Some Facts on ReA3 (1)

- A total of 15 superconducting resonators
 > 7 β=0.041 QWRs and 8 β=0.085 QWRs
- ReA3 linac installed on a mezzanine
 > 3-4 times large vibration than that on the floor
- Improved LLRF controllers

MICHIGAN STATE

UNIVERSITY

- ADRC (Active Disturbance Rejection Control) algorithm is more effective than traditional PID
- Digital self-excited loop employed for automatic cavity tuning and start-up
- Tuners driven by both piezo and stepper motor
 - piezo not working on three resonators
- Beam line vacuum separated from insulating vacuum
- Cryogenics transfer line shared with FRIB resonator tests

Large helium bath pressure when cooldown or warmup

S NSCL

O. Zhao, TTC2017

Some Facts on ReA3 (2)

- Clean rooms established
 - > All warm areas are enclosed by clean rooms
 - Portable clean rooms are used on beam lines
 - Follow regular clean room procedures
- No cold traps adjacent cryomdules

Resonator Field Gradient Setup

- Resonator field gradients calibrated with beam energy measurements
 - Beam energy gain measured with Si detectors and dipole magnets
 - > Higher operation gradient for most β =0.041 resonators
- Different criterion to set the maximum operation gradients
 - Reliable and stable operation is essential
 - > Limit of X-ray emission for β =0.041 resonators
 - > Limit of forward power for β =0.085 resonators
- Scaling of field amplitude works very well to keep same velocity profile (resonator phases not changed) to accelerate ion beams with different q/A
 - ➢ Gradient scaled as large as 15%

Turn on Problems and Solutions (1)

Multipacting

> Multipacting was a major problem during CM2 commissioning

- Multipacting barrier at very low field
- Pulsed conditioning on and off for 2 months
- Reliable operation was achieved since then
- Except CM2R1, multipacting back in 2 years
- Full warm up with pumping for several days, it recovered
- CM3R1 also suffered multipacting barrier at low field
 - Prevented operational use for some experiments
 - Recovered after a warm-up during shutdown
- Mild multipacting
 - Continue conditioning (high or low power) seems not work well
 - Turn off rf power and wait about 10 min, usually works

Turn on Problems and Solutions (2)

- Cross-talk among neighboring resonators
 Sequential procedures developed to deal with the issue
- Ion beam impact although intensity at pA level
 Block beam by inserting upstream Faraday cup(s)
- Interlock threshold set incorrectly
 - instantaneous forward power trip point was set to the same as the average forward power interlock
- Tuner not reacted (rarely happen)

Stable Operation Issues and Resolutions

- Quick helium bath pressure change induced resonator trip
 - Shared helium transfer line
 - Schedule/coordinate with FRIB tests
- Ambient temperature caused the rf amplifiers instable
 - Amplitude fluctuation of some CM2 resonators could be ~10%
 - Better cooling of the air-cooled amplifiers
- Vibration impact
 - rew office building construction (huge impact when digging)
 - Big truck delivery
 - Crane running over
 - Schedule work

Recent Improvements

- Parameters in the LLRF control adjusted based on experimental tests to increase performance
 - ➢ Resonator locked at ~20% field level first and then ramp up
 - "Diagnostics" implemented to record errors that caused trip
 - Speed of stepper motor increased
- RF pulse conditioning reduced field emission
 - Two outer resonators in CM2 developed higher field emission that limits their operation gradient
 - High rf power short pulse conditioning was tried and notable recovery was achieved (X-ray reduced)

X-ray Measurements

- Two outer resonators in CM2
- X-ray less than 10 mRem/hour for operation

First resonator in CM2

MICHIGAN STATE

NIVERSITY

U

Last resonator in CM2

14

Other Experiences

- Long-term resonator operation stability well within specifications
- Operation of resonators is very reproducible
- Cryogenic heat load seems to match predicted values
- Alignment of cold mass seems repeatable after several thermal cycles
- Lots of gas released during warmup cryomodles
 - Leaks in insulating vacuum as well as in beam line vacuum of CM2
 - Vacuum could reach mTorr level
 - > Mainly H, He, C, N, O, H_2O , CO_2 analyzed by RGA

Stable Operation in a 6-day Experiment

Phase jitter within $\pm 0.3^{\circ}$ (peak to peak) for all 7 $\beta=0.041$ resonators with maximum amplitudes

CM1C1 [MV/m] CM2C1 [MV/m] CM2C2 [MV/m] CM2C3 [MV/m] CM2C4 [MV/m] CM2C5 [MV/m] CM2C6 [MV/m] CM3_HeP [atm] CM2_HeP [atm]

Phase jitter within $\pm 0.2^{\circ}$ (peak to peak) for all 8 $\beta=0.085$ resonators with maximum amplitudes

O. Zhao, TTC2017

M3C1 [MV/m] CM3C2 [MV/m] CM3C3 [MV/m] CM3C4 [MV/m] CM3C5 [MV/m] CM3C6 [MV/m] CM3C7 [MV/m] CM3C8 [MV/m] CM3_HeP [atm] CM2_HeP [atm]

16

MICHIGAN STATE

Summary

- ReA has been successfully serving users for two years
 - ReA3 performance was improved
 - Upgrade to Re6-12 being pursued
- Most resonators have been operating stably and reliably
 > β=0.041 resonators over 5 years, β=0.085 ones for 2 years
- Field emission increased in some β=0.041 resonators
 > Especially the first and the last in the second cryomodule
 > RF condition is quite effective to recover the degradation
- Severe multipacting appeared in a few resonators
 - Recovered after warm-up

Acknowledgements

- Strong support from each group at NSCL/FRIB, especially
 - ReA: D. Crisp, A. Lapierre, S. Nash, R. Rencsok, T. Summers, A. Villari, ...
 - SRF: A. Facco, W. Hartung, J. Popielarski, K. Saito, S. Stark, T. Xu, ...
 - ► RF: J. Brandon, M. Holcomb, H. Maniar, D. Morris, N. Usher, S. Zhao, ...
 - > Control: E. Berryman, D, Maxwell, J. Priller, M. Steiner, ...
 - Cryogenics: F. Casagrande, A. Ganshyn, M. Thrush, …
 - AP: M. Ikegami, F. Marti, P. Ostroumov, Y. Yamazaki, …
 - ≻ ...
- Valuable advice and guidance from many external colleagues

Main Design Parameters of ReA Resonators

Location	ReA3		ReA6-12
Туре	λ/4	λ/4	λ/4
Optimum ^β	0.041	0.085	0.085
Frequency	80.5 MHz	80.5 MHz	80.5 MHz
Ер	16.5 MV/m	21.1 MV/m	32.8 MV/m
Va	0.45 MV	1.08 MV	1.78 MV
Eacc	2.8 MV/m	3.4 MV/m	5.6 MV/m
Вр	29 mT	47.4 mT	54.6 mT
Temperature	4.5 K	4.5 K	4.5 K
Active Length	0.157 m	0.317 m	0.317 m
Aperture Diameter	30 mm	30 mm	36 mm
Number of Resonators	7	8	24

MICHIGAN STATE

UNIVERSITY

