

Production of the CADS spoke cavities and ancillaries, and lessons learned

Feisi He

On behalf of colleagues in IHEP SRF group Institute of High Energy Physics (IHEP)

- Background
- Fabrication and quality control
- Vertical test statistics
- He vessel issues and solutions
- Tuner issues

Spoke012 cavity

14 cavities in 2 CM Beam commissioned		Spoke 012
with $2m\Lambda$ CM/ proton from 2 2MoV/ to 10MoV/	β ₀	0.14
	Aperture-mm	35
	Ep/Eacc	5.0
	$Bp/Eacc-mT/(MV/m)^2$	6.9
	G-O	60
	R/Q-Ω	150
	df/dp [Hz/mbar]	-40
	df/dp [Hz/mbar]	-130~-83
	(measured)	
	LFD	-13
Layout of ADS injector I	[Hz/(MV/m)2]	
Quadrupole Buncher Wire scanner Beam stopper Valve BPM FCT FCT ACCT	EM slits Second EM slits SFM IPM ACCT FCT FCT DCCT FCT BPM BPM Dipole Steering Quadrupole BSM Quadrupole	Beam dump Wire scanner
2142 4761.47 2150 10773(=5485+5288) ECRIS+LEBT RFQ MEBT CM1+CM2	Faraday cup 12574 Beam dump line	
32400		.1

Spoke021 cavity

 6 cavities in one CM. developed in IHEP, Assembled in IMP. Waiting for tunnel commissioning

	Spoke 021
β ₀	0.24
Aperture-mm	40
Ep/Eacc	4.4
Bp/Eacc-	9.4
mT/(MV/m) ²	
G-Ω	71
R/Q-Ω	191
df/dp [Hz/mbar]	-6
df/dp [Hz/mbar]	<-10
(measured)	

Background

Fabrication and quality control

- Vertical test statistics
- He vessel issues and solutions

• Tuner issues

Spoke cavities fabrication

- Three qualified vendors provided 16 spoke012 cavities and 10 spoke021 cavities in the production phase. 19 prototype cavities of 6 types of cavities were from 6 vendors.
- 2012, 1st spoke cavity fabrication started
- 2012.12, 1st spoke012 cavity VT

OSTEC

- 2013.9, 1st spoke012 cavity HT with all ancillaries
- 2013.10, 1st spoke021 cavity VT
- 2014.3-9, 4 prototype spoke012 cavities VT, first vendor verified
- 2014.9-2015.3, 4 prototype spoke021 VT, second vendor verified
- 2015.4-9, spoke021 He-vessel tested and modified
- 2014.9-2015.11, 3 batches of 16 production spoke012 cavities from 3 vendors VT
- 2014.12-2016.2, 2 batches of 8 production spoke021 from 2 vendors VT

Development of IHEP ADS SRF cavities

Quality control: frequency control

• Frequency sensitivity of trimming the central ring was calculated based on measured critical sizes.

Quality control: frequency control (2)

- F scattering induced by fabrication error is typically 2— 4MHz(0.6-1.2%)
- Final EBW used to caused f scattering of 1.6MHz; it is 0.2MHz
 when stiffening ring were welded first.

Background

- Fabrication and quality control
- Vertical test statistics
- He vessel issues and solutions
- Tuner issues

Post processing of Spoke cavities

BCP in Ningxia OTIC; re-HPR and clean assembly in IHEP

VT results of the spoke012 cavities

- MP conditioned in 1 hour with variable coupler
- Eacc increased by 2 MV/m with better cooling
- 120C baking increases Q₀ by about 50-100%
- At 2K, Q0 is 6 times higher, Bp~125mT achieved.

Spoke021 testing results

- MP conditioned in 1 hour
- Design target consistently exceeded
- Bp of 120mT and Rres of 7nΩ achieved at 2K

Background

- Fabrication and quality control
- Vertical test statistics
- He vessel issues and solutions
- Tuner issues

Spoke012 He vessel

- Problem: way too huge df/dp (-130 than -40Hz/mbar)
- Mainly by deformation of beam pipe
- Solution: adding stiffeners to He vessel, and stronger TIG welding

Spoke021 He vessel

- Unexpected high df/dp
- df/dp is extremely sensitive to the depth of one weldment, which was switched from EBW to TIG
- Re-weld with EBW solved the problem

Weld depth[mm] (slide fit 0.2mm)	df/dp [Hz/mbar]
5	-1.0
4	-6.5
3	-16.2
2	-32.7
1	-64.4

df/dp [Hz/mbar]	Before	After
021-5#	-60	0
021-6#	-40	-13
021-7#	-58	-12
021-8#	-82	-9
021-9#	-67	-15
021-10#	-65	-11

Background

- Fabrication and quality control
- Vertical test statistics
- He vessel issues and solutions
- Tuner issues

Tuner issue

- Switch from pushing to pulling help reduce df/dp
- Severe backlash and overshoot possibly caused by gears and joints
- They were replaced from service port, which helped more or less

Tuner issue (2)

Thanks for your attention!