Heat Load on a Pillbox Cavity

Yagmur Torun

August 1, 2016

Abstract

Derivation of the power distribution from RF fields on the inner
surfaces of a pillbox cavity made of multiple materials.

Introduction

Consider a cylindrical pillbox cavity with radius a and length L. The
electromagnetic field amplitudes in SI units are given in cylindrical
coordinates (7, ¢, z) by
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in terms of Bessel functions of the first kind Jy, J; with

— 2% 27 f
a
Jo(jor) = 0

where
e Fj is the peak on-axis gradient
e ¢~ 29979 x 108 m/s is the speed of light,
e f is the resonant frequency of the cavity and

® jo1 =~ 2.4048 is the smallest root of Jy



Stored energy

The electromagnetic energy density in the cavity volume is
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and with the full time-dependent fields expressed as

E(r,t) = E(r) coswt
B(r,t) = B(r) sinwt

the total stored energy can be found when wt = 0 or 7 through
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where JZ(jo1) =~ 0.26951 showing that the (spatial) average energy
density is about 27% of the peak in this simple structure and does not

depend on the aspect ratio.

Surface currents and power dissipation

In a cavity made of material with finite conductivity, power dissipation
is due to a thin layer of current under the surface confined to the skin

depth 6. The current density J is given by
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where



o i =471 x 1077 H/m is the permeability of vacuum and

e the subscripts cr, el and e2 refer to the center ring and the two
endplates respectively.

The corresponding (rms) volume and surface power density can be
written as
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where o is the conductivity. This yields
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with the surface (sheet) resistance R, skin depth and conductivity
related through
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The total heat deposited on the surface follows from integration of
these as
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Quality factor

Using the expressions for U and P above, the quality factor of the
cavity resonator is found as
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We can express this in terms of the individual components as
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Effect of the interface

Consider additional power dissipation P, and corresponding @, at
the interfaces (eg. gaskets) between the endplates and the center ring.
The resulting @ is
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Dissipation at the interface is not easy to model. If the endplates and

interfaces are the same on both sides, the unknown ), can be calcu-
lated using the measured cavity ) and the known surface properties.

Effect of coating

A thin layer of TiN is often used as a multipacting barrier. This leads
to additional power dissipation on the surface. For a layer of thickness
t much less than the skin depth d;, the equivalent surface resistance

would be
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If placed over a substrate with power dissipation P;, the additional
power consumed by the TiN layer can be expressed as
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and the effective @) of the surface changes accordingly
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Numerical example

Consider the MTA Modular Cavity with

a = 14.1cm
L = 10.3cm
f = 805 MHz

The center ring is made of copper and endplates made of both copper
and beryllium are available.
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The table below shows various quantities to aid in exploring differ-
ent endplate configurations. Cavity Q refers to the unloaded quality
factor. No correction for the TiN coating is included.



Theory

Peak energy density
Average energy density

[4.42 (J/m3)/(MV /m)?| E?
[1.19 (J/m?)/(MV /m)?| E?

Stored energy U [7.65 mJ/(MV/m)?| EZ
Assumed

Skin depth (Cu) dcu  2.29 um

Skin depth (Be) 0ge  3.49 pm

Surface resistance (Cu) Rcy, 728 m{?

Surface resistance (Be) Rp. 11.1 m{?

Surface resistance (TiN) Rrin  0.35 mf?2

Calculated

Center ring power P..  [630 W/(MV/m)?] E?
Endplate power (Cu) P, [431 W/(MV/m)?] E?
Endplate power (Be) P, (658 W/(MV/m)?| E?
Cavity power (2 Cu ep, no i/f) P [1.49 kW/(MV/m)?] E3
Cavity power (1 Cu + 1 Be ep) P [1.72 kW/(MV/m)?] E?
Cavity power (2 Be ep) P [1.95 kW/(MV/m)?] E?
Component Q (center ring) Q.  61.6k

Component Q (Cu endplate) Q. 89.8k

Component Q (Be endplate) Q. 58.9k

Cavity Q (all Cu, no interface) 26.0k

Cavity Q (1 Cu & 1 Be endplate) 22.5k

Cavity Q (2 Be endplates) 19.9k

Measured

Measured cavity Q (2 Cu endplates) 21.2k

Measured cavity Q (2 Be endplates) 13.5k

Inferred

Interface Q (Cu-ep, calculated) Qg 231k

Interface @ (Be-ep, calculated) Qyq 83.8k

Interface power (Cu-ep) P, [168 W/(MV /m)?| E?
Interface power (Be-ep) P, [463 W/(MV /m)?| E?
Predicted

Expected cavity Q (1 Cu & 1 Be ep) 16.5k

Cavity power (Cu+Cu ep) P [1.83 kW/(MV/m)?] E?
Cavity power (Be+Cu ep) P [2.35 kW /(MV/m)?] E?
Cavity power (Be+Be ep) P [2.87 kW/(MV/m)?] EZ




