
Frequency Shift for a Pillbox Cavity under
Vacuum
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Abstract

We estimate the frequency shift of a pillbox cavity due to deflection
of endplates from differential pressure.

Fields

Consider a cylindrical pillbox cavity with radius a and length L. The
electromagnetic field amplitudes for the TM010 mode in SI units are
given in cylindrical coordinates (r, φ, z) by

~E(r) = E0 J0(j01
r

a
) ẑ

~B(r) =
E0

c
J1(j01

r

a
) φ̂

in terms of Bessel functions of the first kind J0, J1 with

ω = c
j01
a

= 2π f

J0(j01) = 0

where

• E0 is the peak on-axis gradient

• c ' 2.9979× 108 m/s is the speed of light,

• f is the resonant frequency of the cavity and

• j01 ' 2.4048 is the smallest root of J0
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Stored energy

The electromagnetic energy density in the cavity volume is

w =
1

2

[
ε0 E(r, t)2 +

1

µ0
B(r, t)2

]
and with the full time-dependent fields expressed as

~E(r, t) = ~E(r) cosωt

~B(r, t) = ~B(r) sinωt

the total stored energy can be found when ωt = 0 or π through

U = ε0 L

∫ a

0
dr 2π r E2(r) =

L

µ0

∫ a

0
dr 2π r B2(r)

using ∫ 1

0
dx x J2

0 (j01 x) =

∫ 1

0
dx x J2

1 (j01 x) =
1

2
J2
1 (j01)

as

U = J2
1 (j01) (π a2 L)

(
1

2
ε0E

2
0

)
where J2

1 (j01) ' 0.26951 showing that the (spatial) average energy
density is about 27% of the peak in this simple structure and does not
depend on the aspect ratio.

Deflection

If there’s vacuum on one side of an endplate (inside the cavity) and
pressure p on the other side (outside), the deflection d(r) of the end-
plate, under the thin-plate approximation, is given by

d(r) =
3

16

p

E

a4

t3
(1− ν2)

[
1−

(
r

a

)2
] [(

5 + ν

1 + ν

)
−
(
r

a

)2
]

where t is the plate thickness and E and ν are the Young’s modulus
and Poisson’s ratio respectively. This can be rewritten as

d(r) = d0

[
1−

(
r

a

)2
] [

1− α
(
r

a

)2
]
, α ≡ 1 + ν

5 + ν

d0 =
3

16

p

E

a4

t3
(1− ν) (5 + ν)

in terms of the maximum deflection d0 ≡ d(0).
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Frequency shift

Slater’s theorem gives the frequency shift δω when a portion ∆V of
the cavity volume V is removed due to a shape deformation as

δω

ω
=

∫
∆V ( 1

µ0
B2 − ε0E2) dV∫

V ( 1
µ0
B2 + ε0E2) dV

=
1

4µ0 U

∫
∆V

[
B2 −

(
E

c

)2
]
dV

where the integrals are calculated using the unperturbed fields. Using
the volume removed due to deflection of the endplate, we expand the
integral to find

A ≡
∫
∆V

[
B2 −

(
E

c

)2
]
dV

=

(
E0

c

)2 ∫ a

0
dr 2π r

∫ d(r)

0
dz

[
J2
1 (j01

r

a
)− J2

0 (j01
r

a
)

]
= 2π

(
E0

c

)2 ∫ a

0
dr r d(r)

[
J2
1 (j01

r

a
)− J2

0 (j01
r

a
)

]
Plugging in the deflection formula yields

A = 2π a2 d0

(
E0

c

)2 ∫ 1

0
dx x (1− x2) (1− α x2)

[
J2
1 (j01 x)− J2

0 (j01 x)
]

δω

ω
= − 1

J2
1 (j01)

d0
L

∫ 1

0
dx x (1− x2) (1− α x2)

[
J2
0 (j01 x)− J2

1 (j01 x)
]

Using ν = 0.1 for Be and evaluating the integral numerically, we get

δω

ω
= (−0.17768)

d0
L

Numerical example

Substituting 804.5 MHz for the center frequency and L = 10.4 cm for
the length (MTA Modular Cavity),

δf = (−1.374 kHz/µm) d0 = (−34.9 kHz/mil) d0

The other relevant parameters for the Modular Cavity are a = 14.1 cm,
t = 1.27 cm and E = 290 GPa for Be. For p = 1 atm, the correspond-
ing maximum deflection d0 and frequency shift δf are 58 µm and
-78.6 kHz respectively. For 2 atm across one plate, we get 116 µm and
-157.3 kHz.
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Note that

• the accuracy of the estimate can be improved by using the de-
flection results from finite element analysis simulation directly in
the perturbation integral (unlikely to make much difference) or
using fancier perturbation theory with additional modes in the
expansion (total waste of time)

• the normal operating condition (1 atm across each of the 2 plates)
is equivalent to the 2 atm case above if deformation of the center
ring is ignored; to get an estimate for the center ring contribu-
tion, we start with the hoop stress on the ring

σφφ =
p a

tcr

and the corresponding radial strain

δa

a
=
σφφ
Ecr

to get

δf

f
=
δa

a
=

p a

Ecr tcr
' 8.346× 10−6 → δf ' 6.72 kHz

for p = 1 atm using the thickness of the ring tcr = 1.46 cm and
Ecr = 117 GPa for Cu

• the other effect on frequency shift when evacuating the cavity
comes from the change in relative permittivity and is given by

δf

f
=

1

2
[(εr − 1) + (µr − 1)]→ δf ' 237.5 kHz

using εr − 1 = 5.9× 10−4 and µr − 1 = 3.7× 10−7 for air; thus,
the frequency is expected to go up by 86.9 kHz after the cavity is
evacuated and down by 78.6 kHz if one Be endplate is subjected
to an additional load of 1 atm (gauge) external pressure (for a
net change of +8.3 kHz)

• if the frequency measurement is to be used for monitoring de-
flection, the temperature should be controlled or monitored; this
correction can be estimated as

δf

f
=
δa

a
' −κ ∆T
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where κ = 1.65× 10−5 is the coefficient of thermal expansion for
Cu which gives

δf = (−13.3 kHz/K) ∆T
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