First results from CC2 transport matrix measurement at FAST

Alex Halavanau (NIU advisor: P. Piot, FNAL advisor: C. Thangaraj)

Northern Illinois University/Fermilab

18 Aug 2016

- Transverse beam dynamics and trasport matrix measurement of a TESLA-type cavity
- Linear model of the beam transport
- HOM measurements
- Future experiments (magnetized and flat beams)
- Conclusions

Cavity transport matrix measurement

- Motivation
- Analytical model
- Simulation software model
- Beam alignment in the cavity
- Experimental setups
- Preliminary results
- Future planned experiments
- Conclusions

* FAST - Fermilab Accelerator Science and Technology facility

π -mode SW superconducting cavity

Motivation: Several proposed or operating accelerator facilities include standing-wave (SW) TESLA-type cavities, such as FAST, ILC, LCLS-II, PIP2 and etc. to accelerate electron, proton or muon beams.

The transverse-focusing properties of such a cavity and non-ideal transverse-map effects introduced by field asymmetries in the vicinity of the input and high-order-mode radiofrequency (RF) couplers play a crucial role in transverse beam dynamics

① Compare the experimental transverse transfer matrix with analytical model

2 Attempt to characterize the effects discussed above

Analytical model

The transfer matrix of a π -mode RF resonator was first derived by Chambers (1962) and generalized by Serafini and Rosenzweig (1994) A particle in a standing wave field $E_z(z, t) = E_0 \sum_n a_n \cos(nkz) \sin(\omega t + \Delta \phi)$ experiences a ponderomotive-focusing force $F_r = -e(E_r - vB_{\phi}) \approx er \frac{\partial E_z}{\partial z}$. This yields the focusing strength $K_r = -\frac{(E_0e)^2}{8(\gamma m)^2}$. The equation of motion then takes form:

$$x^{\prime\prime\prime} + \left(\frac{\gamma^{\prime}}{\gamma}\right)x^{\prime} + K_r \left(\frac{\gamma^{\prime}}{\gamma}\right)^2 x = 0, \tag{1}$$

The solution of the Eq. 1 can be found in the form of $\mathbf{x}_f = R\mathbf{x}_i$, where the elements of 2 \times 2 matrix R are (assuming ultra-relativistic beam and axially symmetric E-field):

$$R_{11} = \cos \alpha - \sqrt{2} \cos (\Delta \phi) \sin \alpha,$$

$$R_{12} = \sqrt{8} \frac{\gamma_i}{\gamma'} \cos (\Delta \phi) \sin \alpha,$$

$$R_{21} = -\frac{\gamma'}{\gamma_f} \left[\frac{\cos (\Delta \phi)}{\sqrt{2}} + \frac{1}{\sqrt{8} \cos (\Delta \phi)} \right] \sin \alpha,$$

$$R_{22} = \frac{\gamma_i}{\gamma_f} [\cos \alpha + \sqrt{2} \cos (\Delta \phi) \sin \alpha],$$
(2)

where
$$\alpha \equiv \frac{1}{\sqrt{8}\cos{(\Delta\phi)}} \ln{\frac{\gamma_f}{\gamma_i}}$$
, and $\gamma_f \equiv \gamma_i + \gamma' z$ is the final Lorentz factor.

Simulation software model

1 FAST injector contains two Tesla-type cavities

- O IMPACT-T start-to-end model of FAST beamline was established
- $\ensuremath{\mathfrak{S}}$ ASTRA model with HFSS 3D-field maps of the cavities was established

The difference between 1D and 3D simulations

Beam steering by the cavities has been experimentally observed

Beam alignment in the cavities

Electron beam alignment in the cavities is very important for the performance of the beamline

The alignment is done in three steps

- Manually send the beam through the cavity (0-th iteration)
- Apply model dependent beam based alignment procedure to generate first set of trim values (work in progress by Sasha R.)
- Apply conjugate gradient method that minimizes phase response of the cavity using BPM readouts (tested on quadrupoles and provided the alignment corrections that are being used at the moment; work in progress)
- **4** Verify the result by HOM signal from the cavities* (installation in progress)

*Assuming cavity was well aligned during the installation

3D field map simulation results

 $\ensuremath{\operatorname{ASTRA}}$ simulations - HOM coupler effects

Matrix determinant

(agrees reasonably well)

Improvement of the BPMs

Improvements were made just a few days prior to the experiment!

Experimental setup (2015)

Advantages

() Only one cavity with two BPMs upstream/downstream

Issues

- Beam matching in CAV2 was not optimal; significant bunch lengthening in drift (where CAV1 now installed).
- 2 Geometric emittance was large (5 μ m for a 200 pC beam)
- 3 Laser-phase instabilities hampered some of the measurements

Experimental setup (2016)

Schematics of the experiment

5 MeV 20 MeV 34 MeV

Advantages

- 1 Overall better laser performance
- **2** Improved instrumentation (BPM jitter < 80 um)

Issues

- Strong focusing in CAV1 (need to lower the gradient)
- O CAV1 in place, need to adjust the beam size

First measurement campaign at FAST

800 orbits were recorded for 7 phase datapoints

Transverse coordinates were reconstructed as:

 $x_{0i/f} = x_{1i/f} \pm L_{2,3}/L_{1,4}(x_{1i/f} - x_{2i/f}), \qquad x_{0i/f}' = \pm (x_{1i/f} - x_{2i/f})/L_{1,4}$ (3)

- **1** BPM nonlinear corrections were introduced in ACNET (by N. Eddy)
- Overlaps Developed measurement methods based on BPMs
- **③** Developed automated emittance measurement
- 4 Least-squares fitting code was implemented for data processing
- **5** Error bar estimation is made via bootstrap

Preliminary experimental results (2016)

Main diag. matrix elements

Off diag. matrix elements

Matrix elements generally show agreement with theoretical (numerical) prediction

Preliminary experimental results

Matrix determinant

- Results show good agreement with theory and simulations
- Preliminary results were presented at IPAC16 (TUPMY038; Halavanau, A., et. al.)
- HOM studies in progress (HOM effect is a phase dependent dipole kick)

Planned in 2017

- $\textcircled{1} Careful alignment in both CAV1/CAV2}$
- More transport matrix measurements if needed
- 8 HOM steering effect study

Matrix determinant as a function of γ_i

3D field map simulations and Chambers model prediction.

Linear model agrees well with measurements.

Conclusions

- Time dependent HOM coupler kick affects transverse beam dynamics at low energy (verified by both simulations and first experiments)
- Output of the successful FAST injector operation
 Output of the successful FAST injector operation
- SFAST beamline has skew quadrupole magnets and could possibly correct for the HOM/Input coupler correlations (proposed for LCLS-II by D. Dowell)
- **4** HOM data was taken last minute! (work in progress)
- Many developed complimentary tools and scripts are routinely reused in other experiments

Magnetized and Flat beam experiments

Current work

- Magnetized beam production is being extensively simulated at NIU NICADD and GAEA clusters
- Simulation predicts very low (< thermal) emittance in one plane
- Emittance data is not fully understood yet

Future work

- Beamline optics was established with 100% transmission to the dump without Q106,Q107,Q111
- Need group's leaders permission to skew these quadrupoles
- 4D emittance measurement, magnetized and flat beam production