Attenuation correction for SN events DUNE Photon Detector Simulation Meeting

Christopher Backhouse

California Institute of Technology

August 16, 2016

Prior art

LArSoft single-electron TPC resolution studies by Z. Li

- MicroBooNE geometry (max 2.5 m drift)
- 3 ms electron lifetime
- Note: electrons, not neutrinos; we don't yet have a handle on deex γ's
- Note: might get some improvement from induction planes (and/or better recon)

Improve speed of OPDet digitization

- ► Huge number of samples (575,011) in each trace
- Don't analyze stretches with no photon signals or dark noise
- Drawback is line noise can never create a trace in this period
- Checked into feature branch cb_fastopdigi
- Not heavily tested, but seems relatively sane in this talk

(s)	Min	Mean	Median	Max
Before	0.0005	22.6	25.8	35.4
After	0.0004	0.38	0.21	1.00
Ratio	-	59.5	122.9	35.4

- Simulate \sim 9000 events (overnight on one core) of 20MeV e^-
- Workspace geom
- Leave out Ar³⁹ (descoping for complexity and runtime)
- Reco all events (10 processes $\times \sim 1$ hr)
 - ophit, opflash, calwire, gaushit, hitfd, linecluster, trajcluster, blurredcluster
- calwire dominates runtime. Using trajcluster throughout

Reconstruct event energy

totq is sum of clust.Charge(cmFit) if clust.View() == geo::kZ

Width = 26% (fit), 29% (RMS)

Position dependence

Charge attenuation length seems to be 429cm

Corrected charge vs true position

• totq \rightarrow totq $\times \exp(|X_{\text{true}}|/429)$

Charge corrected by true position

- totq \rightarrow totq $\times \exp(|X_{\text{true}}|/429)$
- Width = 8.7% (fit), 13.5% (RMS)

We can measure position from time

Weighted average of all cluster first and last times

▶ Conversion 0.081 cm/tick. Tick = 500ns \rightarrow drift velocity 1.6m/ms

Attenuation vs reco position

- Attenuation 5451 ticks
- Converts to 436cm, consistent with truth
 - C. Backhouse (Caltech)

Corrected charge vs reco position

• totq \rightarrow totq $\times \exp(\text{tick}/5451)$

Charge corrected by reco position

- totq \rightarrow totq $\times \exp(\text{tick}/5451)$
- Width = 8.3% (fit), 13.7% (RMS)

How well can we measure flash time?

flash.Time() for flash with the largest flash.PE()

• Error: $0.084 \mu s \rightarrow only 0.1 mm$ position error

Full correction

- totq \rightarrow totq $\times \exp((\text{tick} t_{\text{flash}})/5451)$
- Width = 8.3% (fit), 13.4% (RMS)

Light loss

Light "attenuation length": 330cm

Results summary

	Fit	RMS
Raw	26%	29%
Truth corr	8.7%	13.5%
Tick corr	8.3%	13.7%
"Realistic" corr	8.3%	13.4%

Future work

- ► Add Ar³⁹
- \blacktriangleright Check clustering in the realistic case \rightarrow develop slicer?
- Check photon signals in realistic case \rightarrow develop matching alg?