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While I have your attention. . .

Thanks to everyone who helped put
the workshop together and for
coming to listen!
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Outline

Theory
I Introduction - why should we study nucleon cross sections?
I z-expansion formalism
I Breakdown

Vector form factor status
Deuterium Bubble Chamber Fits
I Re-fit of bubble chamber data using z-expansion

CKM Matrix Elements
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Motivation

Φ(Eν ) =
N (Eν )
σA(Eν )

Oscillation experiments monitor flux by counting interactions assuming
cross section, near/far detector do not perfectly cancel
=⇒ Measurements of neutrino oscillation depend on precise
knowledge of neutrino cross section

σA ∼ σCCQE⊗(nucl. models)

(σCCQE (Eν ,Q2) is quadratic function of form factors)

I Large nuclear targets =⇒ measurements of oscillation
parameters depends on nuclear models

I Nuclear effects entangled with nucleon amplitudes
=⇒ factorization is oversimplification

I Model-dependent shape parameterization introduces systematic
uncertainties and underestimates errors
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Cross Sections
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(Figure from LBNE, 1307.7335 [hep-ex]) Charge Current QE scattering

I Measurements of neutrino parameters require precise
knowledge of cross sections

I Nuclear cross sections obtained using nucleon amplitudes
as input to nuclear models

I Uncertainty on FA(Q2) is primary contribution to systematic errors

I F1V , F2V known from e − p scattering
I FP suppressed by lepton mass in cross sections

I Focus on FA, but z-expansion could be applied to any of form factors
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z-Expansion

The z-Expansion (1108.0423 [hep-ph]) is a conformal mapping which takes the
kinematically allowed region (t = −Q2 ≤ 0) to within |z | < 1

z(t; t0, tc) =
√

tc − t −
√

tc − t0
√

tc − t +
√

tc − t0
FA(z) =

∞∑
k=0

akzk tc = 9m2
π

z(t = tc) = −1 z(t = t0) = 0 z(t = −∞) = 1
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z-Expansion: tc

z(t; t0, tc) =
√

tc − t −
√

tc − t0
√

tc − t +
√

tc − t0
tc = 9m2

π

tc is the 4-momentum cutoff for particle production

FA =⇒ 3π threshold
(1π forbidden by kinematics, 2π forbidden by G-parity)

G-parity:
ηG = (−1)L+I+S

(both N multiplet and π multiplet have charge −1)

N N′

π

π

π
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z-Expansion: t0

z(t; t0, tc) =
√

tc − t −
√

tc − t0
√

tc − t +
√

tc − t0
z(t = t0) = 0

t0 is an unphysical parameter which can be used to improve convergence

The best t0 is determined by the interesting kinematic range:

topt0 (Q2
max) = tc

(
1 −

√
1 + Q2

max/tc
)

Q2
max[GeV2] t0[GeV2] |z |max

1.0 0 0.44
3.0 0 0.62
1.0 topt0 (1.0 GeV2) = −0.28 0.23
3.0 topt0 (1.0 GeV2) = −0.28 0.45
3.0 topt0 (3.0 GeV2) = −0.57 0.35

8 / 14



z-Expansion: Sum Rules
In practice, only finite order expansion

FA(z) =
kmax∑
k=0

akzk

We can use sum rules to enforce behavior of the form factor in certain limits

I FA(Q2 = 0) = gA =⇒ a0 fixed
I FA(Q2 = ∞) = 0 =⇒ akmax fixed

The second of these rules comes from the perturbative QCD requirement:

lim
t→−∞

FA(t) = a0 + a1 + . . . ∝ (−t)−2
(

lim
t→−∞

z(t) = 1
)

More sum rules can be obtained by taking derivatives:

lim
t→−∞

d
dz

FA(z(t)) =
dt
dz

d
dt

FA(z(t)) ∝ (−t)−3/2

lim
t→−∞

d2

dz2
FA(z(t)) ∝ (−t)−1 lim

t→−∞

d3

dz3
FA(z(t)) ∝ (−t)−1/2

These relations fix ak for k ∈ {0,kmax − 3,kmax − 2,kmax − 1,kmax}
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Coefficient Bounds
Finiteness of the coefficients can be shown by defining a norm:

| |FA | |p ≡ *
,

∑
k
|ak |

p+
-

1
p

p = 2 can be related directly to the dispersion integral
integrated around the unit circle:

| |FA | |2 = *
,

∑
k
|ak |

2+
-

1
2

=

(∮
dz
z
|FA |

2
) 1

2

This integral can be shown to be finite, so the ak must be bounded and
decreasing for large k

p = ∞ is a special case,

| |FA | |∞ = lim
p→∞

*
,

∑
k
|ak |

p+
-

1
p

→ max {|ak |}

with | |FA | |∞ ≤ ||FA | |2, so | |FA | |2 can overestimate relevant coefficient size
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Order Unity Coefficients
Order unity coefficients can be motivated by an ansatz for the form factor

For instance, axial vector meson dominance ansatz with Breit-Wigner form:

FA ∼
m2

a1

m2
a1 − t − iΓa1ma1

≡ −
m2

a1

b(t)

This is recovered by assuming the dispersion relation

ImFA(t + i0) =
Nm3

a1Γa1

|b(t) |2
θ(t − tc)

Given this ansatz, can get analytical expression for z-expansion coefficient bound

From | |FA | |∞, estimate ratio of order-0 and largest z-expansion coefficients:

�����
ak
a0

�����
≤

2|N |
|FA(t0) |

Im *
,

−m2
a1

b(tc) +
√

(tc − t0)b(tc)
+
-

for all k

This expression demonstrates that we can expect coefficients of order unity

t0 = 0 t0 = topt0 (1.0 GeV2)
| |FA | |2/|FA(t0) | 1.5-1.7 1.9-2.3
| |FA | |∞/|FA(t0) | 1.0-1.4 1.4-1.8

(arXiv 1108.0423[hep-ph])
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http://arxiv.org/abs/1108.0423v2


Theory Summary

z-expansion is a model-independent description of the axial form factor

I Motivated by analyticity arguments
I Allows quantification of systematic errors

Coefficients in the z-expansion fall off as the order k increases
I Only a few coefficients needed to represent the form factor
I Good convergence of form factor
I Provides a prescription for introducing more parameters as data improves

Good control of form factor outside of kinematically interesting region
I Expansion parameter |z | < 1 for entire kinematic region (t ∈ [0,∞)),

can determined the required number of coefficients in the expansion a priori
I Convergence can be improved by varying t0
I Sum rules to control large-Q2 behavior,

enforce falloff required by pertrubative QCD (up to log corrections)
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Backup
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CCQE Cross section

(Formaggio, Zeller 1305.7513[hep-ex])

σCCQE (Eν ,Q2) ∝
1

E2
ν

*.
,
A(Q2) ∓ *

,

s − u
M2

N

+
-

B(Q2) + *
,

s − u
M2

N

+
-

2

C(Q2)+/
-

s − u = 4MNEν − Q2 −m2
` η ≡

Q2

4M2
N

A(Q2) =
m2
`
+ Q2

M2
N
×

[
(1 + η)F2

A − (1 − η)(F2
1 + ηF2

2 ) + 4ηF1F2

−
m2
`

4M2
N

(
(F1 + F2)2 + (FA + 2FP )2 − 4(1 + η)F2

P
)

B(Q2) = 4ηFA (F1 + F2) C(Q2) =
1
4

(
F2

A + F2
1 + ηF2

2
)
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https://arxiv.org/abs/1305.7513

