z-Expansion Formalism

Aaron Meyer
asmeyer2012@uchicago.edu
University of Chicago/Fermilab
September 1, 2016

GENIE z-Expansion Mini-Workshop

While I have your attention...

Thanks to everyone who helped put the workshop together and for coming to listen!

Outline

Theory

- Introduction - why should we study nucleon cross sections?
- z-expansion formalism
- Breakdown

Vector form factor status
Deuterium Bubble Chamber Fits

- Re-fit of bubble chamber data using z-expansion

CKM Matrix Elements

Motivation

$$
\Phi\left(E_{v}\right)=\frac{\mathcal{N}\left(E_{v}\right)}{\sigma_{A}\left(E_{v}\right)}
$$

Oscillation experiments monitor flux by counting interactions assuming cross section, near/far detector do not perfectly cancel
\Longrightarrow Measurements of neutrino oscillation depend on precise knowledge of neutrino cross section

$$
\sigma_{A} \sim \sigma_{C C Q E} \otimes(\text { nucl. models })
$$

($\sigma_{C C Q E}\left(E_{\nu}, Q^{2}\right)$ is quadratic function of form factors)

- Large nuclear targets \Longrightarrow measurements of oscillation parameters depends on nuclear models
- Nuclear effects entangled with nucleon amplitudes \Longrightarrow factorization is oversimplification
- Model-dependent shape parameterization introduces systematic uncertainties and underestimates errors

Cross Sections

(Figure from LBNE, 1307.7335 [hep-ex])

Charge Current QE scattering

- Measurements of neutrino parameters require precise knowledge of cross sections
- Nuclear cross sections obtained using nucleon amplitudes as input to nuclear models
- Uncertainty on $F_{A}\left(Q^{2}\right)$ is primary contribution to systematic errors
- $F_{1 V}, F_{2 V}$ known from $e-p$ scattering
- F_{P} suppressed by lepton mass in cross sections
- Focus on F_{A}, but z-expansion could be applied to any of form factors

z-Expansion

The z-Expansion (1108.0423 [hep-ph]) is a conformal mapping which takes the kinematically allowed region $\left(t=-Q^{2} \leq 0\right)$ to within $|z|<1$

$$
z\left(t ; t_{0}, t_{c}\right)=\frac{\sqrt{t_{c}-t}-\sqrt{t_{c}-t_{0}}}{\sqrt{t_{c}-t}+\sqrt{t_{c}-t_{0}}} \quad F_{A}(z)=\sum_{k=0}^{\infty} a_{k} z^{k} \quad t_{c}=9 m_{\pi}^{2}
$$

z-Expansion: t_{c}

$$
z\left(t ; t_{0}, t_{c}\right)=\frac{\sqrt{t_{c}-t}-\sqrt{t_{c}-t_{0}}}{\sqrt{t_{c}-t}+\sqrt{t_{c}-t_{0}}} \quad t_{c}=9 m_{\pi}^{2}
$$

t_{c} is the 4-momentum cutoff for particle production
$F_{A} \Longrightarrow 3 \pi$ threshold
(1π forbidden by kinematics, 2π forbidden by G-parity)
G-parity:

$$
\eta_{G}=(-1)^{L+I+S}
$$

(both N multiplet and π multiplet have charge -1)

z-Expansion: t_{0}

$$
z\left(t ; t_{0}, t_{c}\right)=\frac{\sqrt{t_{c}-t}-\sqrt{t_{c}-t_{0}}}{\sqrt{t_{c}-t}+\sqrt{t_{c}-t_{0}}} \quad z\left(t=t_{0}\right)=0
$$

t_{0} is an unphysical parameter which can be used to improve convergence
The best t_{0} is determined by the interesting kinematic range:

$$
t_{0}^{\mathrm{opt}}\left(Q_{\max }^{2}\right)=t_{c}\left(1-\sqrt{1+Q_{\max }^{2} / t_{c}}\right)
$$

z-Expansion: Sum Rules

In practice, only finite order expansion

$$
F_{A}(z)=\sum_{k=0}^{k_{\max }} a_{k} z^{k}
$$

We can use sum rules to enforce behavior of the form factor in certain limits

- $F_{A}\left(Q^{2}=0\right)=g_{A} \quad \Longrightarrow \quad a_{0}$ fixed
- $F_{A}\left(Q^{2}=\infty\right)=0 \quad \Longrightarrow \quad a_{k_{\text {max }}}$ fixed

The second of these rules comes from the perturbative QCD requirement:

$$
\lim _{t \rightarrow-\infty} F_{A}(t)=a_{0}+a_{1}+\ldots \quad \propto(-t)^{-2} \quad\left(\lim _{t \rightarrow-\infty} z(t)=1\right)
$$

More sum rules can be obtained by taking derivatives:

$$
\begin{gathered}
\lim _{t \rightarrow-\infty} \frac{d}{d z} F_{A}(z(t))=\frac{d t}{d z} \frac{d}{d t} F_{A}(z(t)) \propto(-t)^{-3 / 2} \\
\lim _{t \rightarrow-\infty} \frac{d^{2}}{d z^{2}} F_{A}(z(t)) \propto(-t)^{-1} \quad \lim _{t \rightarrow-\infty} \frac{d^{3}}{d z^{3}} F_{A}(z(t)) \propto(-t)^{-1 / 2}
\end{gathered}
$$

These relations fix a_{k} for $k \in\left\{0, k_{\max }-3, k_{\max }-2, k_{\max }-1, k_{\max }\right\}$

Coefficient Bounds

Finiteness of the coefficients can be shown by defining a norm:

$$
\left\|F_{A}\right\|_{p} \equiv\left(\sum_{k}\left|a_{k}\right|^{p}\right)^{\frac{1}{p}}
$$

$p=2$ can be related directly to the dispersion integral integrated around the unit circle:

$$
\left\|F_{A}\right\|_{2}=\left(\sum_{k}\left|a_{k}\right|^{2}\right)^{\frac{1}{2}}=\left(\oint \frac{d z}{z}\left|F_{A}\right|^{2}\right)^{\frac{1}{2}}
$$

This integral can be shown to be finite, so the a_{k} must be bounded and decreasing for large k
$p=\infty$ is a special case,

$$
\left\|F_{A}\right\|_{\infty}=\lim _{p \rightarrow \infty}\left(\sum_{k}\left|a_{k}\right|^{p}\right)^{\frac{1}{p}} \rightarrow \max \left\{\left|a_{k}\right|\right\}
$$

with $\left\|F_{A}\right\|_{\infty} \leq\left\|F_{A}\right\|_{2}$, so $\left\|F_{A}\right\|_{2}$ can overestimate relevant coefficient size

Order Unity Coefficients

Order unity coefficients can be motivated by an ansatz for the form factor
For instance, axial vector meson dominance ansatz with Breit-Wigner form:

$$
F_{A} \sim \frac{m_{a_{1}}^{2}}{m_{a_{1}}^{2}-t-i \Gamma_{a_{1}} m_{a_{1}}} \equiv-\frac{m_{a_{1}}^{2}}{b(t)}
$$

This is recovered by assuming the dispersion relation

$$
\operatorname{Im} F_{A}(t+i 0)=\frac{\mathcal{N} m_{a_{1}}^{3} \Gamma_{a_{1}}}{|b(t)|^{2}} \theta\left(t-t_{c}\right)
$$

Given this ansatz, can get analytical expression for z-expansion coefficient bound
From $\left\|F_{A}\right\|_{\infty}$, estimate ratio of order-0 and largest z-expansion coefficients:

$$
\left|\frac{a_{k}}{a_{0}}\right| \leq \frac{2|\mathcal{N}|}{\left|F_{A}\left(t_{0}\right)\right|} \operatorname{lm}\left(\frac{-m_{a_{1}}^{2}}{b\left(t_{c}\right)+\sqrt{\left(t_{c}-t_{0}\right) b\left(t_{c}\right)}}\right) \quad \text { for all } k
$$

This expression demonstrates that we can expect coefficients of order unity

	$t_{0}=0$	$t_{0}=t_{0}^{\mathrm{opt}}\left(1.0 \mathrm{GeV}^{2}\right)$		
$\left\\|F_{A}\right\\|_{2} /\left\|F_{A}\left(t_{0}\right)\right\|$	$1.5-1.7$	$1.9-2.3$		
$\left\\|F_{A}\right\\|_{\infty} /\left\|F_{A}\left(t_{0}\right)\right\|$	$1.0-1.4$	$1.4-1.8$		

Theory Summary

z-expansion is a model-independent description of the axial form factor

- Motivated by analyticity arguments
- Allows quantification of systematic errors

Coefficients in the z-expansion fall off as the order k increases

- Only a few coefficients needed to represent the form factor
- Good convergence of form factor
- Provides a prescription for introducing more parameters as data improves

Good control of form factor outside of kinematically interesting region

- Expansion parameter $|z|<1$ for entire kinematic region $(t \in[0, \infty)$), can determined the required number of coefficients in the expansion a priori
- Convergence can be improved by varying t_{0}
- Sum rules to control large- Q^{2} behavior, enforce falloff required by pertrubative QCD (up to log corrections)

Backup

CCQE Cross section

(Formaggio, Zeller 1305.7513[hep-ex])

$$
\begin{gathered}
\sigma_{C C Q E}\left(E_{V}, Q^{2}\right) \propto \frac{1}{E_{v}^{2}}\left(A\left(Q^{2}\right) \mp\left(\frac{s-u}{M_{N}^{2}}\right) B\left(Q^{2}\right)+\left(\frac{s-u}{M_{N}^{2}}\right)^{2} C\left(Q^{2}\right)\right) \\
s-u=4 M_{N} E_{v}-Q^{2}-m_{\ell}^{2} \quad \eta \equiv \frac{Q^{2}}{4 M_{N}^{2}} \\
A\left(Q^{2}\right)=\frac{m_{\ell}^{2}+Q^{2}}{M_{N}^{2}} \times \\
{\left[(1+\eta) F_{A}^{2}-(1-\eta)\left(F_{1}^{2}+\eta F_{2}^{2}\right)+4 \eta F_{1} F_{2}\right.} \\
\left.-\frac{m_{\ell}^{2}}{4 M_{N}^{2}}\left(\left(F_{1}+F_{2}\right)^{2}+\left(F_{A}+2 F_{P}\right)^{2}-4(1+\eta) F_{P}^{2}\right)\right] \\
B\left(Q^{2}\right)=4 \eta F_{A}\left(F_{1}+F_{2}\right) \quad C\left(Q^{2}\right)=\frac{1}{4}\left(F_{A}^{2}+F_{1}^{2}+\eta F_{2}^{2}\right)
\end{gathered}
$$

