

Important Reconstruction Topics for MicroBooNE

Wesley Ketchum (FNAL)

About this talk

- Presenting some of the key challenges and focuses for our current and projected future reconstruction efforts
 - Will give sense of overall priorities and general timelines
 - Lots of overlap with simulation, calibration, and physics analysis work
 - Give examples and highlights from our recent Neutrino2016 analysis push
 - See full selection of public notes here:
 http://www-microboone.fnal.gov/publications/publicnotes/index.html
- We are in the middle of our campaign focused on the next round of improvements
 - Lots of activity on high-priority items
 - Lots of hot-off-presses material
 - Not showing that here, though will talk about what we're working on of course

MicroBooNE Physics Goals

- Reconstruction in MicroBooNE must work to meet the needs of our physics analysis goals
 - 1. Determine the origin (electron or photon) of the "MiniBooNE Low-E excess", and prepare to participate in SBN program search for non-standard oscillations
 - Measure neutrino interaction cross sections on Ar from both BNB and NuMI neturinos
 - Push forward the development, operation, and analysis of data from large LArTPCs, leading towards future LArTPCs (SBN, DUNE)
- We work hard to keep a close connection between "reconstruction" and "analysis"
 - Reconstruction is a fundamental part of our physics analyses
 - Our physics analyses will live and die by the reconstruction and tools we use to do the reconstruction
 - HUGE thanks to our collaborators in LArSoft and art community, and a reminder that we count on you

First, our detector/coordinate system

Second, the MicroBooNE reco chain

Importance of our noise filtering

- We have noise from various sources inside our detector
 - Read more than you probably want to know:
 http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1016-PUB.pdf
- Noise is bad
 - Hurts our signal-to-noise ratio → potential impacts on analyses
 - Especially important to PID
 - Downstream reconstruction complexity/time/performance is directly affected by presence of noise hits
 - Image-type analysis of waveforms can be very sensitive to changes in noise levels/behavior across wires
- Huge effort to filter out noise
 - State-of-art presented in that note, and being applied to all data now
 - Further improvements to handle additional cases
 - Longer outlook: improve speed! (currently ~10-20 s per event!)

Noise filter: before/after

Noise filter: before/after

"CalWire":

Translating raw signals to ionized e

- Downstream reconstruction depends on a normalized response per wire and per plane
 - Application of calibration constants for wire response
 - Deconvolution of E-field effects (electron drift near wires) and signal shaping from electronics
 - COMPLICATED: there are induced charges from neighboring wires
 - We don't perfectly understand what happens in a perfect detector
 - Our detector is not perfect
 - 3D simulation of E-field response, data-driven field response determination, and 2D deconvolution methods underway
 - Targeted for next major software releases
- See here:

http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1017-PUB.pdf

Deconvolution example in U plane

Deconvolution example in U plane

Cosmic rays are a major challenge

- <u>Every</u> MicroBooNE event has significant cosmic-ray-related activity in our "signal" region
 - Long drift + large detector + surface operation → heavy exposure
 - We are probably not at LHC-level of complexity, but we have our own challenges
 - LARGE overlap from wires in each plane
 - No "beam constraint" → search for neutrinos everywhere
- This has a direct affect on our ability to achieve our physics
 - Cosmic-ray-induced showers represent significant background at low-E "electron" selection region
 - Cosmic ray muons can be mis-identified as muons from interactions
- In MicroBooNE (and ICARUS...) cosmic rays are predominant source of triggers
 - Cosmic ray in coincidence with beam gate > neutrino interaction rate

Example of impact in nu_mu CC analysis

- We can model/predict cosmic-ray contamination with "off-beam" data events
 - For this selection, we cut *very* hard to reduce cosmic contamination, and still ~40% of events are just cosmic fakes with no beam activity
- EVEN STILL, that's not all of our cosmic background
 - Beam-related activity + cosmic mis-ID'ed as neutrino is significant part of remaining background!

on-beam		off-beam		
		measured	[scaled]	
546910		388471	[477819]	
135923	(25%/25%)	78657	[96748]	(20%/20%)
134744	(99%/25%)	77868	[95778]	(99%/20%)
74827	(55%/14%)	41844	[51468]	(54%/11%)
22059	(29%/4.0%)	9946	[12234]	(24%/2.6%)
10722	(49%/1.9%)	4295	[5283]	(43%/1.1%)
3213	(30%/0.6%)	1080	[1328]	(25%/0.3%)
	546910 135923 134744 74827 22059 10722	546910 135923 (25%/25%) 134744 (99%/25%) 74827 (55%/14%) 22059 (29%/4.0%) 10722 (49%/1.9%)	measured 546910 388471 135923 (25%/25%) 78657 134744 (99%/25%) 77868 74827 (55%/14%) 41844 22059 (29%/4.0%) 9946 10722 (49%/1.9%) 4295	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Cosmic ray removal strategy part 1

- We use geometry of TPC to identify through-going and out-oftime tracks
 - Broken tracks can fool reconstruction, thinking something is contained
 - Mis-reconstructed length or track positions can lead to failures in geometrical tagging of tracks
 - Non-reconstructed tracks → invalidated proximity cuts for EM showers
 - No great handle on track direction
 - If contained, can look for charge deposition at end of track
 - If not ... delta rays? This would need work!

Example from nu_mu CC analysis

Specifically for tracking/vertexing

- Need to reduce fake reconstruction of "neutrino" vertices from Pandora
- Need to reduce effects of gaps/dead wire regions on tracking/vertexing
- Improve the handling of remnant cosmic-ray tracks
 - For instance, need to be careful about CR tracks close to neutrino activity! Important for shower reconstruction!
- Improve reconstruction for shorter tracks
 - proton reconstruction and cross section measurements!
- Improve fitting of tracks to trajectories
 - Important for improving efficiency and length reconstruction
 - Crucial for future studies on multiple coulomb scattering on exiting tracks
- Except for very last point, these are all being actively worked on and planned for next major software release (January-ish)

Cosmic ray removal strategy part 2

- We use matching of scintillation light information to TPC activity to try to assign an interaction time
 - Currently this is not very robust: basic checking of consistency between "light flash" inside beam gate and TPC muon candidate track based on geometry
- Improvements here are high priority for us for the next software release
 - And may be the driver on the time of that release

■ We need:

- Better simulation of our expected light yields in detector, and better measurements using external cosmic taggers to pin that down
- Improvement and validation of our optical reconstruction, using PMT array to better determine Y/Z position of scintillation light origin
- Improvement in construction of "light hypotheses" for TPC activity
- Improvement in comparison of light hypotheses to reconstructed light → t0 for all observed TPC objects

Shower reconstruction

- This is hard!
 - See http://www-microboone.fnal.gov/publications/publicnot-es/MICROBOONE-NOTE-1012-PUB.pdf
- Need to reconstruct EM showers across a range of energies
 - GeV showers do not look like ~100-MeV showers
- Energy reconstruction is crucial!
 - It's the "E" in low-E
 - Properly cluster hits from showers in a busy environment
 - Properly account for recombination effects
 - Shower profiling may help?
- Simple shower selection is also difficult!
- This is very active effort right now, and important for next results

Not far down the road

- Calorimetry and PID
 - MicroBooNE has not yet fully invoked robust calorimetry and PID in analyses yet
 - Much of this work has been done in ArgoNeut and LArIAT, and we hope to benefit from that expertise
 - For track-like objects: exploit dE/dx vs. residual range
 - PIDA parameterization from B. Baller
 - For showers, need dE/dx at start point of shower
 - I expect there will be potential improvements to standard methods here
 - Optimization of selection, improving fits to dE/dx vs. residual range, etc.

Truth-level info for PID. From ArgoNeuT: Acciarri et al, 2013 JINST Vol. 8 P08005

Deep Learning

- There is a growing effort towards applying deep learning techniques across many facets of reconstruction
 - Neutrino identification inside cosmics
 - Particle identification
 - Energy reconstruction
- Promising early-stage results, but many challenges remain
 - Understanding data vs. data+MC vs. MC-only response
 - Evaluation of systematic uncertainties
 - Specialization/generalization of network response to other LArTPCs

See http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1019-PUB.pdf