Event Mixing for Larsoft

H. Greenlee

Contents

e This talk 1s about MicroBooNE's implementation (code and
scripts) for running cosmic overlay mc, including workflow and
production tools.

- Overview of event mixing in art.
— MicroBooNE's strategy for event mixing.

- Workflow/production tools.

Event Mixing Overview

e Definition of event mixing:

— Primary stream consists of a standard art event source (e.g.
RootInput module).

— Another (non-source) module 1s responsible for reading from the
secondary input stream and producing combined data products.

e Built-in art support event mixing.

— EDFilter module MixFilter<T> handles actual I/O from secondary
input stream.

— User provides “detail” class T that 1s responsible for combining data
products from the two input streams.

o Detail class registers functions for mixing various data products.

e Detail class optionally registers “getMixFile” class to choose next mix
input file.

MicroBooNE Cosmic Overlay

e MicroBooNE's implementation of MixFilter<T> is called
OverlayRawDataMicroBooNE (typedef
MixFilter<OverlayRawDataDetailMicroBooNE>).

— Dealil class released in uboonecode product.

— Detail class combines data products RawDigit and OpDetWaveform,
and copies any other data products found in one input file (e.g. mc
truth).

- Also registers getMixFile method which 1s implemented to get
secondary input files from a sam dataset.

— One input is from mc. Other input is cosmic data.

» Detail class can be configured such that either the mc or cosmic data is
primary input.

Which Input Should be Primary?

e In general, for any event mixing scenario, the primary input
should be the one that you are more interested in bookkeeping.

Worktlow tools (project.py, pubs, poms), with art and sam, already
provide significant support for bookkeeping the primary input
stream (“‘for free”).

Art and MixFilter<T> provide zero support for bookkeeping the
secondary input stream.

For above reasons, bookkeeping of secondary input stream will
always be worse than primary input stream.

MicroBooNE chose to make the mc the primary input and cosmic
data the secondary input.

* Even though it might have been operationally easier to do the opposite.

e Use sam to bookkeep the secondary input stream (rather than invent a
whole 'nother bookkeeping system for secondary input).

Secondary Input SAM Project

e Mixing module detail class interacts with SAM system using art IFDH service
(from ifdh_art ups product).

e Detail class is responsible for the following aspects of secondary sam project
management.

- Starting batch worker's consumer process.
- Requesting next file(s).
e Requested in form of streamable xrootd url.
— Releasing file(s) and updating file status.
- Stopping batch worker's consumer process.
— Generating parentage sam metadata for secondary inputs.

 Workflow is responsible for:

— Starting secondary sam project.

- Stopping secondary sam project.

FCL Configuration of Mixing Module

e Specify sam dataset and sam project as fcl parameters of mising
module OverlayRawDataMicroBooNE.

filters : {
mixer: { module type : OverlayRawDataMicroBooONE
detail : {
SamDefname: prod extunbiased swizzle inclusive v3
SamProject: greenlee prod extunbiased swizzle inclusive v3 20160901 154140

}

— Sam fcl parameters (dataset definition name and project name)
should be automatically generated by workftlow.

Configuring Batch Projects for project.py

e Here is an example project.py xml merge step configuration.

<stage name="mix">
<fcl>/uboone/data/users/greenlee/cosmic overlay/run DataOverlayMixer.fcl</fcl>

<mixinputdef>greenlee mix test</mixinputdef>

<outdir>/pnfs/uboone/scratch/users/greenlee/&release;/&name; /mix</outdir>
<logdir>/pnfs/uboone/scratch/users/greenlee/&release;/&name; /mix</logdir>
<workdir>/pnfs/uboone/scratch/users/greenlee/work/&release;/&name; /mix</workdir>
<numjobs>20</numjobs>

<datatier>raw</datatier>

<defname>greenlee &name;</defname>

<maxfilesperjob>l</maxfilesperjob>

<memory>4000</memory>

<jobsub>--expected-lifetime=short</jobsub>

<initsource>mix sam.sh</initsource>
</stage>

— <mixinputdef> is a newly defined xml element, which you use to
specify the sam dataset containing secondary input data.

— Use <initsource> xml element to run script mix_sam.sh (now
included 1n ubutil package) to generate fcl wrapper.

Modifications to Larbatch

e Larbatch package contains scripts project.py and condor_lar.sh,
used by several LArTPC experiments, and should be
experiment-independent.

New stage xml element <mixnputdef> added to stage definition
(stagedef.py).

Project.py generates dag to start sam project for secondary input
stream (in addition to primary input stream, if from sam).

Name of sam project and name of sam dataset passed to batch script
condor_lar.sh using command line options.

Condor_lar.sh parses secondary input command line options but
doesn't do anything much with them (because experiment-specific).

Modifications to Ubutil

e Ubutil package contains changes that are MicroBooNE-specific,
works with or plugs into hooks provided by larbatch scripts.

— MicroBooNE Metadata extractor script extractor_dict.py merges
primary and secondary parent files into single list.

— Script mix_sam.sh plugs into hooks inside condor_lar.sh and
generates experiment-specific wrapper fcl to pass sam parameters to
module OverlayRawDataMicroBooNE.

10

Mixing Summary Data Product

e In addition to joining or copying data products, module
OverlayRawDataMicroBooNE generates a MicroBooNE-specific
data product called EventMixingSummary containing the event id
(run, subrun, event number) of secondary event.

 We also want to store the time stamp of secondary event (because
out databases are indexed by time stamp).

— MixFilter interface does not currently make the time stamp of the
secondary event available to mixing module.

— Art feature request issue opened to make time stamp available.

11

SAM Bookkeeping

« SAM will automatically ensure that every process that requests a
file within a given project (i.e. within a single batch submission)
receives a different file (up to the maximum number of available

files).

e It1s also possible to define a kind of sam dataset (called a
recursive dataset) that will only deliver a file once per campaign,
even across multiple projects/ batch submissions.

— Instructions available on uboonecode wiki:

 https://cdcvs.fnal.gov/redmine/projects/uboonecode/wiki/Sam#Recursive-datasets

— This 1s the kind of dataset we would probably want to use for mc
production.

12

https://cdcvs.fnal.gov/redmine/projects/uboonecode/wiki/Sam#Recursive-datasets

Status of Repositories

e Larbatch updated on feature branch feature/greenlee_mix.

— Propose to merge to develop for this week's integration release.

— Not a breaking change.

13

Summary

 Workflow changes needed to support MicroBooNE's model for
event mixing (aka cosmic overlay) require changes in larbatch
product (scripts project.py and condor_lar.sh), which are ready for
release.

14

Backup

Previously Released Updates to Larbatch

« All file access goes through posix-like 1/o0 layer (module
larbatch_posix).

— Can be configured to use either posix or grid 1/0 tools (e.g. ifdh).

— Allows project.py to run on a node that doesn't have nfs access to
bluearc or dCache.

16

Other Pending Updates to Larbatch

e Future updates to larbatch (Joel Mousseau).

- Move most validation and bookkeeping (e.g. declare files to sam)
from submitting node (project.py) to batch worker node
(condor_lar.sh).

— Allow condor_lar.sh to run multiple steps (multiple invocations of
lar).

— Combine experiment-independent aspects of metadata extraction
into a common extensible implementation of extractor_dict.py.

17

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

