
Parallelizing LArSoft modules

ERIC CHURCH, JUAN BRANDI-LOZANO, MALACHI SCHRAMM
RDNS and SDI groups, PNNL
20-Sep-2016

September 12, 2016 1

Outline

September 12, 2016 2

  Motivation
  Want to speed up the code with minimal memory hit.
  PNNL resources (computers, FTEs)

  Focused on GausHitFinder_module.cc
  Problems we knew we had to overcome
  Problems that caused a bit of trouble, but which we overcame
  Stubborn shiz that was irritating that needed solving and was beyond the
scope of what we thought we were taking on! … which we overcame

  Results
  Resource changes (both better and worse)

  Mainly better

  What should be next?

LArSoft meeting

One might hope to gain performance
improvements by threading up various
LArSoft modules

September 12, 2016 3

  At PNNL we have some people fluent with OpenMP and with MPI
  We have lots of scientific computing resources at PNNL. In particular, one 24
core machine with 128+ GBytes memory we can play with. It’s largely all
ours.

  OMP only requires small CMakeLists.txt changes and adding a couple
pragmas in front of desired for loop
  One big shared memory chunk that all the threads see

  We thought we’d quickly implement OMP and then move to MPI
  MPI first on one machine, then on N machines (HPC scalability)

  We’re only at MPI now! “Simple” OMP’ifying took longer than expected.
  MPI distributes the memory across cores, and we would throw particular
iterations of loops at those cores.

  In both cases, goal is to assemble the object at end of module after all
threads are done, and, in one place, put_into() the event.

LArSoft meeting

Candidate modules

September 12, 2016 4

  Any which have a big for loop on the 8,000+ channels in a big LArTPC,
for example. 150k+ in DUNE?
  Want a module, in which iterations don’t depend on each other, and could in
principle be performed concurrently.

  Erica suggested GaussHitFinder_module in a MicroBooNE collaboration
meeting talk a couple months ago, and Ruth mentioned this possibility at
ICHEP too.

  Want a module which takes as much time as many other single module,
depending on what reco chain is being run, of course.

  At PNNL, we had chosen GausHitFinder_module independently, for the same
reasons others had identified it as one worth attacking.

LArSoft meeting

Time spent in a typical reco chain 5_08

September 12, 2016 5

  ==
===================================
TimeTracker printout (sec) Min Avg Max Median RMS nEvts

  ==
===================================

  Full event 26.4698 29.1435 31.1214 29.4146 1.47419 10

reco:rns:RandomNumberSaver 3.4461e-05 8.39357e-05 0.000455685 4.3729e-05 0.000124034 10
reco:digitfilter:NoiseFilter 13.428 13.5213 13.7195 13.4706 0.0937018 10
reco:caldata:CalWireROI 3.92545 4.2721 4.55916 4.319 0.176564 10
reco:gaushit:GausHitFinder 1.44308 2.67415 3.65894 2.72471 0.738649 10
reco:TriggerResults:TriggerResultInserter 2.2549e-05 3.02089e-05 8.0534e-05 2.49175e-05 1.68072e-05 10
end_path:hitana:GausHitFinderAna 0.384017 0.472613 0.569486 0.489097 0.0613182 10

  end_path:out1:RootOutput 7.25915 8.20184 8.92039 8.37981 0.524692 10

These	
 are	
 (mes	
 for	
 10	
 MicroBooNE	
 real	
 data	
 events.	

One	
 might	
 rather	
 tackle	
 NoiseFilter	
 or	
 CalWireROI,	
 but	
 that’s	
 for	
 this	
 par(cular	
 reco	
 chain.	

LArSoft meeting

GausHitFinder_module.cc

September 12, 2016 6

  Takes CalROI waveforms on all wires as input
  These are deconvolved waveforms that have been identified as possibly
containing a hit

  Loops over these, makes a histogram of each, and then fits n Gaussians in a
THF1 with a TF1 function – set as Gaussian with nx3 parameters. Deletes
that histogram and fit at each iteration.

  Right after that, in the middle of the big while(wires) loop, it calls HitCreator,
keeping track of all associations, move()’s the pointer to a Hit() and pushes
that back onto a HitCollection hcol, and at the end put_into()’s the Event.

LArSoft meeting

Henceforth, till explicitly stated,

September 12, 2016 7

  Single muon MC sample of 20 events in MicroBooNE,
  Sometimes I will show uB data.

  v05_08_00 (ROOT 5.34)
  Sometimes I will show v06_02_00 (ROOT6) results

  Will use OpenMP

  Have not yet pushed our git-forked PNNL repo branches back to FNAL
redmine.

LArSoft meeting

Obvious thing to do

September 12, 2016 8

  Simply put an OMP pragma in front of the while loop over wires.

  Export OMP_NUM_THREADS=1,2,4,8,24 ….
  This little change causes wireIter iterations to go to that many processor
threads. As they finish the next one is assigned out ….

  Boom. Mic-drop.

 #pragma omp parallel
 {
 //iterating over all wires
 #pragma omp for schedule(dynamic)
 for(size_t wireIter = 0; wireIter < wireVecHandle->size();

 wireIter++)
 {
…
	

LArSoft meeting

First two problems.

September 12, 2016 9

  First problem. hcol is global. => thread contention.

  Okay, instead of constructing each hcol iteration, hang onto the arguments –
build them in std::maps – and sequentially build the hcol after all threads are
joined, using each item in the map.

  One other problem: HitCreator(), which remains inside the thread
function, takes as an argument the art::Services geom singleton
(global!). It needs thesSignalType – Induction/Collection.
  This causes thread contention again.
  Easily solved. Get the signalType, and pass it instead of full art::geom object.

  Requires new lardata HitCreator constructor.

LArSoft meeting

Assembling the arguments – 3 slides we
can skip if people don’t care

September 12, 2016 10

 std::map < uint16_t, std::vector<recob::Hit>> hitsthreads;
 std::map < uint16_t, std:: vector <art::Ptr<recob::Wire>> > wiresthreads;

 std::map < uint16_t, std:: vector <art::Ptr<raw::RawDigit>> > digitsthreads;	
 	

numHits++;

 onehitperthread.emplace_back(hitcreator.move());
 onewireperthread.emplace_back(wire);
 onedigitperthread.emplace_back(rawdigits);
 } // <---End loop over gaussians

}//<---End loop over merged candidate hits
 } //<---End looping over ROI's 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

LArSoft meeting

Using the arguments

September 12, 2016 11

 hitsthreads[tid] = onehitperthread;
 wiresthreads[tid] = onewireperthread;
 digitsthreads[tid] = onedigitperthread;

 }//<---End looping over all the wires
 } // end of omp parallel region 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 ……….

for(auto const& jj : t_ID){
 // std::vector <int> t_IDtmp(0);
 //std::iota (std::begin(t_IDtmp), std::end(t_IDtmp), 0);
 //for(auto const& jj : t_IDtmp){

 auto hind = hitsthreads.find(jj);
 auto wind = wiresthreads.find(jj);
 auto dind = digitsthreads.find(jj);
 if (hind == hitsthreads.end()) break;
 if (wind == wiresthreads.end()) break;
 if (dind == digitsthreads.end()) break;
 for (uint16_t kk=0 ; kk < (hind->second).size(); kk++) {

 hcol.emplace_back(hind->second.at(kk),wind->second.at(kk),dind->second.at(kk));
 }
 }

LArSoft meeting

std::map arguments, the real lesson

September 12, 2016 12

  The point of all this is that std::maps are not thread safe, as-is.

  However, one can access them across threads if all their keys have been
initialized. Who knew? (This crowd, probably.) I did not.

 for(int ii=0; ii<(int)wireVecHandle->size(); ii++){
 hitsthreads[ii] = std::vector<recob::Hit>();
 wiresthreads[ii] = std::vector<art::Ptr<recob::Wire>>();
 digitsthreads[ii] = std::vector<art::Ptr<raw::RawDigit>>();

 }

LArSoft meeting

Lesson

September 12, 2016 13

  Do not be so hasty to drop the mic…

LArSoft meeting

ROOT 5.34’s TF1 fit to TH1F approach –
this and next 4 slides are worth presenting if
people want the narrative (in which there is in
fact educational value)...

September 12, 2016 14

  TF1 fit to TH1F segfaults if $OMP_NUM_THREADS>1

Googling for it shows it to be a well-known problem.

  Some big global ROOT something is instantiated that multiple threads can’t
contend for concurrently

  And here, the long, winding trail in the ROOT forest begins.

LArSoft meeting

ROOT::Fit::Fitter

September 12, 2016 15

  The Wisdom (Extensive googling) suggests to use ROOT::Fit::Fitter
instead of THF1/+THF1 and to wrap each instance in its own Tthread().

  We followed this path.
  Example code from Andreas Zoglauer as in ROOT tutorial implemented.
  One needs to define a struct{} to pass to the thread function in order to set,
and get back things like start, end points, fit parameters, their errors, chi2ndf.
Each ROI instance of the class needs to hold/give back the relevant values.

  This sort of worked. Still, however, some contention somewhere with n
threads => gdb dumps of segfaults show crashes at such places
  And, worse, the memory bloats to 15 GB/evt on the 1st event, and was not
given back.
  This, despite being sure to properly destruct any stray anything we could find.

LArSoft meeting

Let’s try ROOT6

September 12, 2016 16

  We jump to branch LARSOFT_SUITE_v06_02_00_ec
  Online there is some suggestion multi-threading is better in ROOT6
  And before re-implementing TThread approach, we find some internet
chatter that ROOT6 has perhaps even solved the TF1 fit to TH1F approach

  We rewind to that would-be solution.
  Still segfaults with OMP_NUM_THREADS>1. So, just no.

  Thus, Re-implement ROOT::Fit::Fitter TThread() approach.
  Now, with 8 threads the memory hovers at a mere ~2.5 Gbytes after a few events!
  However, performance is sporadic.

  sometimes after all threads are evidently complete and joined, the ROOT Ouput takes a
long time and event sometimes crashes.
  Sometimes there is a hang, which I can get past with gdb –p procID; continue in another

window. Seems, erm, inelegant and unsustainable
  Changing thread num up or down can make memory leak re-appear.
  Sometimes –nskip 10 makes everything work fine.
  => something remains F’d in ||’izing root even in ROOT6
  Could be user mis-implementation, for sure, still

LArSoft meeting

ROOT5 jobs’ calgrind output

September 12, 2016 17

TCloning seems to be aggressively copying everything sometimes.

LArSoft meeting

calgrind stack trace from previous event

September 12, 2016 18

LArSoft meeting

At this point, let’s investigate other Fitters

September 12, 2016 19

  First thought was to use R
  LARSOFT_SUITE_v06_02_00_Rcpp

  Minimal (6-FTE-hours spent figuring out the needed CMakeLists.txt change)
for Rcpp to compile/build LArSoft module on our pnnl machine.
  R code exists that can minimize a chi2 on a non-linear function and return fit
parameters.
  However, nobody uses R this way. People instead use C++ in R so that they
can make their calls in interactive R faster.
  What we want can be done, however: one seems to need to build huge long
strings that are the interactive R calls and then pass them through a parser in
our C++ code.

  Would be inelegant to assemble these strings thread-by-thread
  Not obviously thread safe either. Didn’t get that far to know .
  We abandoned this, because of …

LArSoft meeting

GNU Scientific Library (GSL)

September 12, 2016 20

  ROOT’s MINUIT fitter sits on top of GSL …

  All we’d be doing is eliminating all the ROOT fitting wrapping, at the
expense of needing to code up two free functions, and make it all work:
  One function is an N-gaussian residual-from-data calculator
  Another function calculates Its first derivative

  GSL is manifestly thread safe. There are no unknown globals or
singletons being created anywhere. No crazy TCloning going on.

  It comes with any of the LArSoft bundles from scisoft.fnal.gov! (I didn’t
realize that at first.)

CMakeLists.txt change took a mere 1 FTE hour.

  _LARSOFT_SUITE_v06_02_00_gsl

LArSoft meeting

GSL does what we’d hoped all along

September 12, 2016 21

  1 and 8 thread peak VMem goes from ~2 to 2.3 GB for single particle MC
muons.
  Unsurprising linear memory increase.
  No memory leaks: memory recovers after each event

  CPU time is reduced by about x6 on this sample.
  Unsurprising asymptotic performance

LArSoft meeting

calgrind plot for GSL running

September 12, 2016 22

Single	
 par(cle	
 MC	
 on	
 4	
 events,	
 but	
 data	
 looks	
 similarly	
 x2	

This	
 is	
 resident	
 memory	
 coming	
 from	
 calgrind,	
 I	
 think.	

LArSoft meeting

CPU/VMem –single particle MC

September 12, 2016 23

8	
 threads	
 gives	
 x5	
 speed	
 increase	
 in	
 single	
 muon	
 MC	
 at	
 ~15%	
 increase	
 in	
 virtpeak	
 memory	

LArSoft meeting

CPU/VMem – MicroBooNE data

September 12, 2016 24

  We try this now on MicroBooNE data where we have a lot of crossing
muons, and therefore, many more hits than single particle MC

  => Repeatable, performant

LArSoft meeting

ROOT 6_02 (unthreaded, out of box)

September 12, 2016 25

  ==
===================================
TimeTracker printout (sec) Min Avg Max Median RMS nEvts

  ==
===================================

  Full event 28.9618 34.8124 40.2324 35.2362 3.35886 10

reco:rns:RandomNumberSaver 5.5597e-05 0.000114742 0.000408752 8.8504e-05 9.94096e-05 10
reco:digitfilter:NoiseFilter 14.5245 14.5967 14.7099 14.5796 0.0575846 10
reco:caldata:CalWireROI 3.78673 4.13537 4.44043 4.17267 0.180542 10
reco:gaushit:GausHitFinder 2.75883 7.17243 12.1659 7.28882 2.66237 10
reco:TriggerResults:TriggerResultInserter 3.8007e-05 4.67128e-05 7.2272e-05 4.6923e-05 9.54044e-06 10
end_path:hitana:GausHitFinderAna 0.436671 0.616667 0.768997 0.649385 0.114106 10

  end_path:out1:RootOutput 7.32778 8.28955 8.96363 8.4851 0.540422 10

ROOT6	
 x2	
 slower	
 than	
 ROOT5.34	
 (2.67	
 from	
 slide	
 5,	
 remember.)	

LArSoft meeting

GSL 1 Thread vs 8 Threads – uB data

September 12, 2016 26

  ==
===================================
TimeTracker printout (sec) Min Avg Max Median RMS nEvts

  ==
===================================

  Full event 27.0138 28.7438 30.038 29.088 1.01262 10

reco:rns:RandomNumberSaver 5.9985e-05 0.000112205 0.000446773 6.93335e-05 0.000112637 10
reco:digitfilter:NoiseFilter 14.6211 14.7859 14.9135 14.8057 0.105385 10
reco:caldata:CalWireROI 3.80954 4.13443 4.43179 4.17129 0.17415 10
reco:gaushit:GausHitFinder 0.621876 1.14477 1.55812 1.16916 0.335909 10
reco:TriggerResults:TriggerResultInserter 3.7077e-05 6.42121e-05 9.7182e-05 5.7808e-05 2.4508e-05 10
end_path:hitana:GausHitFinderAna 0.367328 0.473554 0.604935 0.499931 0.0754328 10

  end_path:out1:RootOutput 7.28578 8.2021 8.90999 8.3884 0.523765 10
  ==

===================================

  GSL 8 Threads
reco:gaushit:GausHitFinder 0.205231 0.463043 0.780243 0.510354 0.166003 10

x2	
 faster	
 just	
 geWng	
 rid	
 of	
 ROOT6.	
 another	
 x2.5	
 faster	
 going	
 to	
 8	

threads.	
 	

LArSoft meeting

Validation plots

September 12, 2016 27

Nothing	
 has	
 been	
 broken	
 going	
 to	
 GSL!	
 ….	
 Chi2ndf	
 is	
 even	
 be\er?	

LArSoft meeting

What modules should be next?

September 12, 2016 28

RawDigitFilter in MicroBooNE’s case, anyway, is another big offender.
  Removes various noise sources

  This is another module that runs over (groups of) wires, and should
probably be easy to ||’ize.
  I should never say easy.
  There could be memory problems holding onto groups of wires.
  But the whole ROOT fitting rathole is absent in this module.

LArSoft meeting

How does this all fit into HPC at FNAL?

September 12, 2016 29

  I don’t know.

  condor knows how to allocate jobs for multi-threaded code, I think.
  Does jobsub know how to wrap that up? Certainly, not all modules’ needs can
be balanced and jobs put on appropriate worker nodes.

  We think a 10-20% memory increase at the expense of x3-5 cpu time
decrease is good.
  Probably not all modules will benefit so dramatically
  If all cores on all nodes are already busy, none of this buys anything.

  But, it does by something, if cores on nodes are at all idle.
  Also, could this 10-20% increase trip up the max memory enforcing
mechanisms?

LArSoft meeting

Not obvious where PNNL goes with this

September 12, 2016 30

  Would like to do some MPI implementation
  Would perhaps be very useful to show how this works across multiple nodes.

  We might investigate getting a paper out of this
  What does LArSoft say about that?

  We’d like to partner with FNAL to do some of this work if it’s deemed
valuable.
  Our money to explore much further will be out very soon

