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Science Drivers 

Credit: NASA/WMAP Science Team 

•  Is inflation the correct 
theory for explaining 
initial perturbations in 
the universe? 

•  What was the Big 
Bang? 

•  How did dark matter 
and baryons interact to 
form structure in our 
universe? 

•  When did the first stars 
and galaxies appear? 

•  How did luminous 
matter affect the global 
state of the universe?  

•  What is driving the 
accelerated 
expansion of the 
universe? 

•  What is dark 
energy? 

•  Is general relativity 
the correct theory 
of gravity? 

•  Did anything 
unexpected 
happen? 
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21 CM = HYDROGEN 

• The most abundant element 
in the universe 
•  75% of all baryons by mass 

 
• Hyperfine splitting energy 
differential of 5.9 × 10-6 eV 
•  ν = 1420 MHz 
•  λ = 21 cm 
•  T = 0.068 K 
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Credit: NASA/WMAP Science Team 

21 cm Cosmology 

ß Wavelength 21 cm 



21 cm Cosmology 
• Observing at different wavelengths/frequencies probes 

different epochs of cosmic history 
1.  Dark Ages (15 Myr – 180 Myr, z = 100 – 20, ν21cm = 15 – 70 MHz) 
2.  Epoch of Reionization (180 Myr – 1 Gyr, z = 20 – 5, ν21cm = 70 – 240 MHz) 
3.  Post-reionization (1 Gyr – present, z = 5 – 0, ν21cm = 240 – 1420 MHz) 

• Potential to provide 3D map of the universe through the lens 
of neutral hydrogen 

Credit: Scientific American, DARE Collaboration 
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The Epoch of Reionization (EoR) 



Imaging the EoR 

Real Space 
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Foregrounds – Nothing New! 

Credit: Planck Collaboration 



Foregrounds – From Bad to Worse 

Carroll et al., in prep. 



21 cm Foregrounds 
•  Foreground emission 

swamps 21 cm signal by 4 – 
5 orders of magnitude  

•  Foreground emission 
mechanisms are power-law 
synchrotron and 
bremsstrahlung 

•  21 cm signal varies rapidly 
with frequency 

•  Separate from 21cm signal 
using spectral smoothness 

Jelic et al. 2008 
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21 cm Experiments 
•  Dynamic range between 

signal and foregrounds 
represents a new challenge 
for interferometry 

•  Make sure your instrument 
doesn’t make foregrounds 
look “unsmooth” 

•  Requires stability and 
calibratability 

•  Answer: dedicated 
instruments with simple 
elements 

The Precision Array for Probing the 
Epoch of Reionization (PAPER) 

The Murchison Widefield Array 
(MWA) 



Interferometers 
• Each baseline measures one Fourier mode of the sky 

(visibility) 

• Want many unique baselines to reconstruct images 

AA48CH05-Morales ARI 23 July 2010 15:26
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Figure 7
This figure pictorially depicts the fundamental measurement process of interferometry. The six left-hand panels (a–f ) describe the
electric field, while the right six panels ( g–l ) correspond to the same operations in terms of brightness. Within each set of six panels the
left-hand columns are expressed in sky coordinates (θ ), whereas the right-hand columns show the Fourier coordinate representation of
the same relationship. The rows of the figure correspond (top to bottom) to the incident or true radiation pattern, the properties of the
interferometric array, and the resulting electric field or brightness measurements. The number of antennas and the point spread
function have been simplified for illustration purposes.

Integrating over the sky to determine the total electric field at each location, we obtain the fun-
damental relationship of interferometry:

E(r, t) =
∫

E(θ, t)e2π iθ ·r/λd 2θ . (8)
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Cosmological Fourier Space 



The Power of Fourier Space 

The principal observable 
for first generation 21 cm 
experiments is the Fourier 
Space power spectrum. 
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200 MHz 
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Mode Mixing & The Wedge 

SIMULATION 
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Mode Mixing & The Wedge 

DATA 
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Mode Mixing & The Wedge 

Two principal analysis goals: 

1.  Keep the window clean 
(“Foreground avoidance”) 

2.  Make the window bigger 
(“Foreground subtraction”) 



The Wedge Paradigm at Other Redshifts 
• Wedge slope is a function of redshift: 

•  X converts from radians (primary beam) to Mpc 
•  Y converts from Hz (bandwidth) to Mpc 
•  Depend on on angular diameter distance, Hubble constant 

• Wedge slope is 3.7 at z = 9.5, but only 0.8 at z = 1.2! 
•  Lose many fewer modes to the wedge 

The Astrophysical Journal, 782:66 (25pp), 2014 February 20 Pober et al.

can be partially mitigated by a more frequency-independent
instrument design (although at the expense of sensitivity at
higher frequencies).

It should be pointed out that for snapshot observations,
the large-sized HERA dishes prevent measurements of the
largest transverse scales. At 150 MHz (z = 8.5), the minimum
baseline length of 14 m corresponds to a transverse k mode of
k⊥ = 0.0068 h Mpc−1. This array will be unable to observe
transverse modes on larger scales, without mosaicking or
otherwise integrating over longer than one drift through the
primary beam. The sensitivity calculation used in this work
does not account for such an analysis and therefore will limit
the sensitivity of the array to larger-scale modes. For an
experiment targeting unique cosmological information on the
largest cosmic scales (e.g., primordial non-Gaussianity), this
effect may prove problematic. For studies of the EoR power
spectrum, the limitation on measurements at low k⊥ has little
effect on the end result, especially given the near ubiquitous
presence of foreground contamination on large scales in our
models (Section 2.2).

The integration time t on a given k mode is determined by the
length of time any baseline in the array samples each uv pixel
over the course of the observation. Since we assume a drift-
scanning telescope, the length of the observation is set by the
size of the primary beam. The time it takes a patch of sky to
drift through the beam is the duration over which we can average
coherently. For the ∼10◦ primary beam model above, this time
is ∼40 minutes.

We assume that there exists one Galactic cold patch spanning
6 hr in right ascension suitable for EoR observations, an
assumption that is based on measurements from both PAPER
and the MWA and on previous models (e.g., de Oliveira-
Costa et al. 2008). There are thus nine independent fields of
40 minutes in right ascension (corresponding to the primary
beam size calculated above) that are observed per day. We
also assume EoR-quality observations can only be conducted
at night, yielding ∼180 days per year of good observing.
Therefore, our thermal noise uncertainty (i.e., the 1σ error bar
on the power spectrum) is reduced by a factor of

√
9 × 180 over

that calculated from one field, whereas the contribution to the
errors from sample variance is only reduced by

√
9.

2.2. Foregrounds

Because of its spectral smoothness, foreground emission is
expected to contaminate low-order line-of-sight Fourier modes
in the power spectrum. Of great concern, however, are chromatic
effects in an interferometer’s response, which can introduce
spectral structure into foreground emission. However, recent
work has shown that these chromatic mode-mixing effects do not
indiscriminately corrupt all the modes of the power spectrum.
Rather, foregrounds are confined to a wedge-shaped region in
the 2D (k⊥, k∥) plane, with more k∥ modes free from foreground
contamination on the shortest baselines (i.e., at the smallest k⊥
values; Datta et al. 2010; Vedantham et al. 2012; Morales et al.
2012; Parsons et al. 2012b; Trott et al. 2012), as schematically
diagrammed in Figure 2. Power spectrum analysis in both Dillon
et al. (2013b) and Pober et al. (2013a) reveal the presence of
the wedge in actual observations. The single-baseline approach
(Parsons et al. 2012b) used in Pober et al. (2013a) yields a
cleaner EoR window, although at the loss of some sensitivity
that comes from combining nonredundant baselines.

However, there is still considerable debate about where to
define the “edge” of the wedge. Our three foreground models,

Figure 2. Schematic diagram of the wedge and EoR window in 2D k space; see
Section 2.2 for explanations of the terms.

summarized in Table 2, differ in their choice of “wedge
edge.” Our pessimistic model also explores the possibility that
systematic effects discussed in Hazelton et al. (2013) could
prevent coherent addition of partially redundant baselines. It
should be noted that although we use the shorthand “foreground
model” to describe these three scenarios, in many ways these
represent foreground removal models since they pertain to
improvements over current analysis techniques that may better
separate foreground emission from the 21 cm signal.

2.2.1. Foreground Removal Models

At present, observational limits on the edge to the foreground
wedge in cylindrical (k⊥, k∥) space are still somewhat unclear.
Pober et al. (2013a) find the wedge to extend as much as
∆k∥ = 0.05–0.1 h Mpc−1 beyond the “horizon limit,” i.e., the k∥
mode on a given baseline that corresponds to the chromatic sine
wave created by a flat-spectrum source of emission located at
the horizon. (This mode in many ways represents a fundamental
limit as the interference pattern cannot oscillate any faster for
a flat-spectrum source of celestial emission; see Parsons et al.
2012b for a full discussion of the wedge in the language of
geometric delay space.) Mathematically, the horizon limit is

k∥,hor = 2π

Y

|b|
c

=
(

1
ν

X

Y

)
k⊥, (2)

where |b| is the baseline length in meters, c is the speed
of light, ν is the observing frequency, and X and Y are
the previously described cosmological scalars for converting
observed bandwidths and solid angles to h Mpc−1, respectively,
defined in Parsons et al. (2012a) and Furlanetto et al. (2006b).
Pober et al. (2013a) attribute the presence of “suprahorizon”
emission, emission at k∥ values greater than the horizon limit, to
spectral structure in the foregrounds themselves, which creates
a convolving kernel in k space. Parsons et al. (2012b) predict
that the wedge could extend as much as ∆k∥ = 0.15 h Mpc−1

beyond the horizon limit at the level of the 21 cm EoR signal.
This suprahorizon emission has a dramatic effect on the size
of the EoR window, increasing the k∥ extent of the wedge by
nearly a factor of four on the 16λ baselines used by PAPER in
Parsons et al. (2013).

Others have argued that the wedge will extend not to the
horizon limit but only to the edges of the field of view, outside

4



Aside: Noise 
• X & Y also enter into the normalization of noise (measured 

in MHz/str) to cosmological Fourier space 

• X2Y is 540 (h-1Mpc)3 at z = 9, but only 28 (h-1Mpc)3 at z = 1 
•  Can be a significant reduction in noise for a low z experiment! 

The Astrophysical Journal, 753:81 (16pp), 2012 July 1 Parsons et al.

Theoretical studies often express the 21 cm signal in a dimen-
sionless manner given by ∆̂2(k) ≡ k3

2π2 P̂ (k) (using that P21(k) is
expected to be nearly isotropic; McQuinn et al. 2006), making
it useful to write Equation (12) as

Ṽ 2
21(u, v, η) ≈

(
2kB

λ2

)2 Ω B

X2Y

2π2

k3
∆̂2

21(k). (13)

2.2. Single-baseline Sensitivity Measuring One k-mode

The next step toward estimating the sensitivity to the 21 cm
signal is to calculate the power spectrum of the thermal noise
of an instrument. Thermal fluctuations produce a white-noise
signal with rms brightness temperature TN,rms, which in practice
will be roughly equal to the sky temperature for 21 cm
instruments. The thermal noise contributes a component to the
rms amplitude of the visibility ṼN equal to

ṼN = 2kB

λ2
TN,rms Ω B. (14)

This equation can be derived from Equation (4) assuming a
white-spectrum thermal noise for I with temperature TN,rms.
We substitute ṼN for Ṽ in Equation (13) to get the noise
contribution10 to the dimensionless power, ∆2

N(k), yielding

∆2
N(k) ≈ X2Y

k3

2π2
Ω B T 2

N,rms(u, v, η). (15)

Since there are 2Bt independent measurements of the noise
for time t, the value of TN,rms noise that should enter in
Equation (15) is not the true temperature at any given time
(which is usually called the system temperature Tsys), but rather
the error in how well Tsys can be measured (which relates
to the error in how well thermal noise can be measured and
subtracted off, and is

√
2Tsys for Gaussian random noise) or

T 2
N,rms = T 2

sys/Bt . With this substitution,

∆2
N(k) ≈ X2Y

k3

2π2

Ω
2t

T 2
sys, (16)

where t is the integration time for sampling a particular (u, v, η)-
mode, and the factor of two in the denominator comes from the
explicit inclusion of two orthogonal polarizations to measure
the total unpolarized signal.11 This equation differs from the
derivations given in Morales (2005) and McQuinn et al. (2006)
by only this polarization factor. Note how the power-spectrum
sensitivity toward a particular k-mode is independent of band-
width, and that (Furlanetto et al. 2006)

X ≈ 1.9
(

1 + z

10

)0.2

h−1 Mpc
arcmin

(17)

10 When squaring Ṽ in Equation (13), it is important to construct an estimator
of ∆2

21(k) that is not biased by the noise power spectrum. This can be
accomplished by subtracting off a measured noise power spectrum, or more
elegantly by constructing cross-products Ṽi Ṽ

∗
j from pairs of samples i, j that

measure the same Fourier mode but have independent thermal noise. The
sensitivities that are derived here reflect the residual error that remains in an
unbiased construction of Ṽ 2.
11 As defined above, ∆2

N(k) indicates the noise left in the map after one tries to
subtract the noise power using all of the available information. It may be
defined equivalently as relating to the signal-to-noise at which the true power
spectrum, ∆2

21(k), can be measured in a k-bin: S/N = ∆2
21(k)/∆2

N(k). This
definition assumes that ∆2

N is calculated for a real-valued sky, so that baselines
sampling positive and negative Fourier components are not counted as
independent measurements.

Y ≈ 17
(

1 + z

10

) 1
2
(

Ωmh2

0.15

)− 1
2 Mpc

MHz
, (18)

giving us (for Ωm = 0.27):

X2Y ≈ 540
(

1 + z

10

)0.9
h−3 Mpc3

sr · Hz
. (19)

Substituting for X2Y at z = 8.5 (assuming observations at
150 MHz) in Equation (16), and choosing fiducial PAPER
parameters, we have

∆2
N(k) ≈ 2.8 × 104

[
k

0.1 h Mpc−1

]3 [
Ω

0.76 sr

] 3
2

×
[

Tsys

500 K

]2 [
120 days

tdays

] [ |u|
20

]
mK2, (20)

where we assume 120 days of observation with a baseline of
length |u| ∼ 20 that allows ∼13 minutes of integration per
day, for a total integration time of 9 × 104 s per (u, v, η)-
mode. In general, integration time per mode per day depends
strongly on baseline orientation and the latitude at which an
array is deployed. We will estimate a minimum integration
timescale here for arrays at mid-latitudes, and defer an exact,
configuration-dependent treatment until Sections 2.4 and 3. We
compute the amount of time a baseline samples a (u, v, η)-mode
per day, tper mode, as it is limited by the timescale for Earth-
rotation to move the sampling of a baseline a distance of Ω−1/2 in
the uv-plane: tper mode ≈ 1/

√
Ωω⊕|u|, where ω⊕ is the angular

speed of Earth’s rotation. The choice of 20 wavelengths as a
fiducial baseline length is arbitrary, but represents an estimate
of a minimum baseline length that is not dominated by galactic
synchrotron emission (see Section 3.2).

The cosmological 21 cm signal is typically much smaller
than the noise in a single baseline, as given by Equation (20).
This assumption is reflected in our derivation by the absence
of sample variance as a significant contribution to the errors
we compute. The globally averaged spin temperature of the
21 cm transition is ⟨T21⟩ = 28([1 + z]/10)1/2 mK for neutral
intergalactic medium, assuming that the spin temperature of
the 21 cm transition is much larger than the cosmic microwave
background (CMB) temperature (which will almost certainly
hold at z < 10; e.g., Furlanetto et al. 2006). For a patchy
reionization process, an estimate for the dimensionless power
spectrum of 21 cm fluctuations arising from inhomogeneities in
the ionization fraction is given by

∆2
21cm ∼ ⟨T21⟩2(xH − x2

H )/ ln(kmax/kmin), (21)

where xH is the average neutral hydrogen fraction and kmin and
kmax are the wave-vectors between which most of the power
lies. Consistent with this estimate, when xH ≈ 0.5, simulations
of reionization find 10 < ∆2

21 < 100 mK2 with a flat spectrum
over 0.1 < k < 10 h Mpc−1 (McQuinn et al. 2007; Trac &
Cen 2007). Models with rarer sources tend to produce larger
ionized regions and more power than those with more abundant
sources (McQuinn et al. 2007). Comparing Equation (21)
to the sensitivity of a baseline in Equation (20) motivates
the exploration of methods for bolstering the sensitivity of
instruments to the 21 cm EoR signal.

Before proceeding, it is worth reiterating the assumptions that
went into the previous derivation, and to consider any generality
that may have been lost:

4
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The Wedge (To Scale) 
• EoR instruments do not probe k|| and 
k⊥ on equal scales 

 
•  100 kHz resolution è k||,max ~ 5 h/Mpc 
 
•  300 m baseline è k⊥,max ~ 0.15 h/Mpc 

• 21 cm EoR experiments probe line of 
sight k modes 

• Scales are much better matched at 
low z 
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The wedge bias 3

is the power spectrum measured in the EoR window defined by
some µmin.

3 SIMULATIONS

To study the wedge bias on the 21-cm power spectrum, we use a
set of semi-numerical reionization simulations carried out on top
of a numerical N -body simulation. The N -body simulation was
performed with CUBEP3M (Harnois-Déraps et al. 2013). This code
calculates gravitational forces on a particle-particle basis for small
distances and on a mesh for longer distances. We used 69123 par-
ticles of mass 4 ⇥ 107 M� on a 138243 mesh, which was later
downsampled to 6003 cells. The total size of the simulation vol-
ume was 500/h = 714 cMpc along each side. The minimum dark
matter halo mass used in the simulation was 2.02⇥ 109 M�.

The reionization part of the simulations was carried out with a
modified version of the semi-numerical code described in Choud-
hury et al. (2009) and Majumdar et al. (2014). This code calculates
the ionization state of the intergalactic medium by comparing the
average number of ionizing photons entering in a cell with the av-
erage number of neutral hydrogen atoms in it. A cell is considered
ionized if it is possible to find a sphere of some radius around it
within which the number of ionizing photons exceeds the number
of neutral hydrogen atoms.

We use two different models for assigning ionizing fluxes to
our dark matter halos. In the fiducial model, the ionizing flux is
proportional to the halos mass, Mh:

N�(Mh) = Nion
Mh⌦b

mp⌦m
, (4)

where Nion is the number of photons leaving the halo per baryon in
collapsed objects and mp is the mass of a hydrogen atom. The total
number of ionizing photons is not conserved in this scheme due
to the overlapping of ionized regions (Zahn et al. 2007). We tune
the value of Nion at different redshifts to compensate for this and
also to make sure that the resulting reionization history follows the
same trend as the evolution of the mass averaged collapsed fraction
with redshift. Our results (Section 4) are sensitive mainly to neutral
fraction rather than redshift, and so we will present our results as a
function of x̄HI for the remainder of the paper.

The second model, which we will refer to as the “massive
sources” model, has N� / M2

h , with the proportionality constant
tuned to give the same reionization history as the fiducial model.
This model assigns higher fluxes to more massive sources, resulting
in fewer and larger ionized bubbles. These two models were chosen
to provide two very different examples of reionization topologies.
The resulting reionization history (which is the same for both mod-
els) is shown in Figure 3.

After running the reionization simulations, we combine the
density fields from the N -body simulations with the ionization
fields to get the 21-cm brightness temperature, making the simpli-
fying assumption that the spin temperature is much higher than the
temperature of the cosmic microwave background (CMB). Finally,
we convert the output from real space to redshift space, using the
methodology described in Jensen et al. (2013). All simulations use
the cosmological parameters from WMAP five year data release:
h = 0.7, ⌦m = 0.27, ⌦⇤ = 0.73, ⌦bh

2 = 0.0226 (Komatsu et al.
2009).
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Figure 3. The mass averaged mean neutral fraction as a function of redshift
in our simulations.

µmin = 0.5 µmin = 0.95

0

20

40

60

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
xHI

∆
s2  (m

K2 )

k(Mpc−1)

0.09

0.16

0.25

0.42

Figure 4. The spherically-averaged power spectrum measured in full k
shells (solid lines) and outside the wedge only (dashed lines). The results are
shown for the fiducial model for µmin = 0.5 (left panel) and µmin = 0.95
(right panel).

4 RESULTS

To illustrate the bias that occurs when measuring the spherically-
averaged 21-cm power spectrum in the EoR window, we calculate
the power spectrum from our simulated 21-cm volumes, both for
the full volume and for a window defined by some value of µmin.

Figure 4 shows the power spectra for the fiducial model. It
is clear from this figure that when we restrict the measurement
to certain µ values, we overestimate the power spectrum early in
the reionization process and underestimate it later on. Since the
redshift-space distortion effect varies with redshift (see e.g. Mao
et al. 2012), so will the wedge bias. The bias is most pronounced
on large scales (small values of k) and, as expected, becomes more
significant in the case of a smaller EoR window (higher µmin).
Problematically, increased bias at high redshift obscures the char-
acteristic rise and fall signature in the 21-cm power spectrum.

Figures 5 and 6 show the bias, i.e. (�2
s,window � �2

s)/�
2
s,

when estimating the redshift-space power spectrum in the EoR win-
dow, for our two different reionization models. The bias is positive
early on, with the EoR window power spectrum over-estimating
the true redshift-space power spectrum by around 100 per cent. At
x̄HI ⇡ 0.8, the bias turns negative and then becomes fairly in-
significant in the later stages of reionization (less than 20 per cent
for all k modes even for µmin = 0.95). The change in sign is due
to the increased anti-correlation between matter density and ioniza-
tion fraction (see e.g. Mao et al. 2012; Jensen et al. 2013; Majumdar
et al. 2013).

The first, positive, peak in the bias is slightly more pronounced
and occurs a little later in the fiducial model than in the massive
sources model. The second, negative peak is almost absent in the

MNRAS 000, 1–5 (2015)

Line of Sight Modes 

• Observed power 
spectrum is in redshift 
space – not isotropic 

• Anti-correlation between 
density and ionization 
fields can decrease line 
of sight power during 
EoR 

• Potential for “wedge” 
bias if not accounted for 
(Jensen et al. 2015) 

Pober 2015 

Jensen et al. 2015 



Line of Sight Modes 

• Significantly 
shallower wedge 
slope for low z 
alleviates the issue 

• Foreground 
avoidance can be 
an especially 
powerful technique 
for low z 21 cm 
experiments! 

Pober 2015 
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Two Critical Paths Forward 

• Making the most out of first generation experiments 
 
•  More rigorous testing (data simulation, multiple pipelines) 

•  Continued analysis (and cross-analysis) of existing data sets 

 
• Building on lessons learned for a second generation 

experiment 



Two Critical Paths Forward 

• Making the most out of first generation experiments 
 
•  More rigorous testing (data simulation, multiple pipelines) 

•  Continued analysis (and cross-analysis) of existing data sets 

 
• Building on lessons learned for a second generation 

experiment 



Data Simulation 
•  New effects discovered as 

simulations better 
reproduce interferometric 
data 



Data Simulation 
•  New effects discovered as 

simulations better 
reproduce interferometric 
data 

•  Datta et al. (2010) discovers 
wedge with floating-point 
visibility gridding 

No. 1, 2010 BRIGHT SOURCE SUBTRACTION REQUIREMENTS 535

Figure 9. (a) Estimated 2D thermal uncertainty spectrum for 300 hr of integration with the MWA (Bowman et al. 2009). The thermal uncertainty is dependent on the
shape and size of the binning operation in the 2D power spectrum. Here, the bins depicted in the figure are spaced at five per decade in both k⊥ and k∥. The MWA
samples small k⊥ much more densely than large k⊥, but because the bins are logarithmic, the thermal uncertainty per bin reaches a minimum at intermediate values.
(b) Theoretical 2D power spectrum of the H i 21 cm signal (Furlanetto et al. 2006) given by P (k⊥, k∥) = (1 + 2µ2 + µ4)P (k), where µ = k∥/|k|. Note that the quantity
plotted here and in the following figures is P (k⊥, k∥) in units of mK2 Mpc−3. The color scale is shown in log10 P (k⊥, k∥).
(A color version of this figure is available in the online journal.)

Figure 10. (a) 2D power spectrum of the GSM-subtracted residual image I res(θ⃗ , ν) made after subtraction of a foreground model with source position errors of
σθ = 0.1 arcsec. (b) Same as panel (a) but for the GSM+polynomial-subtracted residual image, I res

polysub(θ⃗ , ν), that is produced after polynomial fitting and subtraction
has been applied along each sight line. The shaded region in panel (b) corresponds to k ! 0.03 Mpc−1, where the polynomial fitting is expected to remove much of
the structure. The color scale is shown in log10 P (k⊥, k∥).
(A color version of this figure is available in the online journal.)

the dominant structure is equivalent to the second harmonic in
a sinc function. This results from the Fourier transform along
the frequency of the relatively sharp boundary in the MWA
UV coverage that occurs as any given UV radius transitions
from receiving relatively sparse visibility sampling at lower
frequencies to more dense sampling at higher frequencies as the
core the MWA effectively expands in UV space (measured in
units of wavelengths) from low to high frequencies.

In Figures 10 and 11, it is evident that there are modest
differences between the residuals for the two cases of error

that deviate from the commonality of the wedge-like feature.
These are also easily accounted for by examining the subtraction
model for each case. In the case of the source position errors,
the residuals are the interference pattern from the beating of
two foreground models that are nearly identical, with only the
positions of each of the sources shifted by small angular offsets.
In general, the interference pattern from this process at any given
frequency will nearly cancel all power at large angular scales
since the differences in phase of the perfect and the erroneous
model visibilities are minimal at small UV (small k⊥). The

Datta et al. 2010 



Data Simulation 
•  New effects discovered as 

simulations better 
reproduce interferometric 
data 

•  Datta et al. (2010) discovers 
wedge with floating-point 
visibility gridding 

•  Thyagarajan et al. (2015) 
discovers “edge 
brightening” by simulating 
horizon-to-horizon 

Thyagarajan et al. 2015 
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Multiple Pipelines 
• MWA developing cross-linking between independent 

Australian and US pipelines 

Jacobs et al. (2016) 



Pipeline Cross-Linking 

Jacobs et al. (2016) 



Two Critical Paths Forward 

• Making the most out of first generation experiments 
 
•  More rigorous testing (data simulation, multiple pipelines) 

•  Continued analysis (and cross-analysis) of existing data sets 

 
• Building on lessons learned for a second generation 

experiment 



MWA Collaboration MWA Collaboration



The Murchison Widefield Array (MWA) 



MWA EoR Project 
•  Custom built calibration/imaging 

(FHD) and power spectrum 
calculation (εppsilon) at UW 

•  Second pipe based in Australia 

•  Forward model foregrounds for 
calibration & subtraction 

•  1000+ hours of data collected; 
approaching 400 on a single field 

•  Improve pipe methodically on small 
amounts of data 

•  New limits from 40 hours in 
Beardsley et al. 2016 

F I D U C I A L  D AY  P O W E R  S P E C T R U M
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Sullivan, Hazelton, Beardsley, Morales and et al

High band (z=6.8)

Hazelton, Beardsley, Pober, et al., in prep. 



Systematics Below the Imaging Limit 

• Answer: reflections in 
150 m cables (only 
present on some tiles) 

• Solution: now fit out in 
calibration solutions 

Known features in instrument 
bandpass 

??? 



The Donald C. Backer Precision Array for 
Probing the Epoch of Reionization (PAPER) 
U. Pennsylvania 
•   James Aguirre 
•   David Moore 
•   Saul Kohn 
 
Brown U. 
•  Jonathan Pober 
 

UC Berkeley 
•  Aaron Parsons 
•  Zaki Ali 
•  Dave DeBoer 
•  Dave MacMahon 
•  Adrian Liu 
•  Carina Cheng 
 

U. Virginia / NRAO 
•   Rich Bradley 
•   Chris Carilli 
•   Pat Klima 
•   Nicole Gugliucci 

Arizona State U. 
•   Daniel Jacobs 

SKA South Africa 
•  Gianni Bernardi 
•  Rhidima Nunhokee 
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The Precision Array for Probing the Epoch 
of Reionization (PAPER) 
•  One goal: detect the power spectrum of 21 cm emission from the 

EoR 

•  Redundant configuration 
improves power 
spectrum sensitivity: 
measure the same 
Fourier mode multiple 
times! (Parsons, Pober, 
et al. 2012a) 

•  Little imaging capabilities 
– foreground avoidance 
vs. foreground 
subtraction (Parsons, 
Pober, et al. 2012b) 



PAPER 32 upper limit: (41 mK)2 at z = 7.7 

Parsons et al. (2014) 



Multi-redshift results 

Jacobs, Pober, et al. (2014) 

MWA (Dillon et al. 2014) 
 
GMRT (Paciga et al. 2013) 



PAPER 64 upper limit: (22 mK)2 at z = 8.4 

Ali et al. (2015) 



Two Critical Paths Forward 

• Making the most out of first generation experiments 
 
•  More rigorous testing (data simulation, multiple pipelines) 

•  Continued analysis (and cross-analysis) of existing data sets 

 
• Building on lessons learned for second generation 

experiments 



What’s Next? 

MWA 

• MWA EoR project 
continuing 

• MWA expansion  
•  Phase II: 256 tiles 
•  Phase III: improved 

passband, more tiles? 

PAPER 

• PAPER finished 
observations April 1, 2015 

•  2 seasons of PAPER 128 
being analyzed 

• PAPER refurbishment to 
become HERA 



MWA Phase II 
• Addition of two 
redundant 
hexagonal cores 
in summer 2016 

• First array that will 
allow us to 
simultaneously 
test sky-based 
and redundant 
calibration for EoR 
studies 



Construction Complete 
Commissioning Underway! 

• First redundant 
calibration 
achieved last 
week by 
Wenyang Li 

• Comparison with 
sky-based 
calibration 
underway! 

Brown Grad Students: Adam Lanman, Josh 
Kerrigan, and Wenyang Li 



HERA (Hydrogen Epoch of Reionization Array) 

•  Sensitivity: 14 m reflector design significantly boosts PAPER dipole 
collecting area, better polarization properties 

 
•  Analysis: Dense array + outriggers allows for imaging and improved 

foreground removal techniques 

•  Chromaticity: Short focal length keeps reflections to delays below k-
modes of interest 

Approx. 300m 

Modified PAPER Dipole 

2016 papers by Neben, 
Ewall-Wice, Patra, and 

Thyagarajan 



The Importance of Sensitivity 
•  Every published 21 cm 

limit detected something 

•  With moderate 
significance – how can 
you jackknife? 

diagonal, this reduces to simple inverse variance weighting
with the variance on modes outside the EoR window or in
the k∥ ∼ 0.45 hMpc−1 line set to infinity.
In Fig. 9 we show the result of that calculation as a

“dimensionless” power spectra Δ2ðkÞ≡ k3PðkÞ=2π2. We
choose our binning such that the window functions
(calculated as in [13] from our covariance model) were
slightly overlapping.
Our results are largely consistent with noise. Since noise

is independent of k∥ and k ≈ k∥ for most modes we
measure, the noise in Δ2ðkÞ scales as k3. We see deviations
from that trend at low k where modes are dominated by
residual foreground emission beyond the horizon wedge
and thus show elevated variance and bias in comparison to
modes at higher k. Since we do not subtract a bias, even
these “detections” are upper limits on the cosmological
signal.
A number of barely significant detections are observed at

higher k. Though we excise bins associated with the k∥ ∼
0.45 hMpc−1 line, the slight detections may be due to
leakage from that line. At higher z, the feature may be due

to reflections from cables of a different length, though some
may be plausibly attributable to noise. Deeper integration is
required to investigate further.
Our best upper limit at 95% confidence is Δ2ðkÞ <

3.7 × 104 mK2 at k ¼ 0.18 hMpc−1 around z ¼ 6.8. Our
absolute lowest limit is about 2 times lower than the best
limit in [13], though the latter was obtained at substantially
higher redshift and lower k, making the two somewhat
incomparable. Our best limit is roughly 3 orders of
magnitude better than the best limit of [13] over the same
redshift range, and the overall noise level (as measured by
the part of the power spectrum that scales as k3) is more
than 2 orders of magnitude smaller. This cannot be
explained by more antenna tiles alone; it is likely that
the noise level was overestimated in [13] due to insuffi-
ciently rapid time interleaving of the data cubes used to
infer the overall noise level.
Although one cannot directly compare limits at different

values of k and z, our limit is similar to the GMRT limit [8],
6.2 × 104 mK2 at k ¼ 0.50 hMpc−1 and z ¼ 8.6 with 40 h
of observation, and remains higher than the best PAPER
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FIG. 9 (color online). Finally, we can set confident limits on the 21 cm power spectrum at three redshifts by splitting our simultaneous
bandwidth into three 10.24 MHz data cubes. The lowest k bins show the strongest “detections,” though they are attributable to
suprahorizon emission [26] that we expect to appear because we only cut out the wedge and a small buffer (0.02 hMpc−1) past it. We
also see marginal “detections” at higher k which are likely due to subtle bandpass calibration effects like cable reflections. The largest
such error, which occurs at bins around k∥ ∼ 0.45 hMpc−1 and can be seen most clearly in Fig. 8, has been flagged and removed from all
three of these plots. Our absolute lowest limit requiresΔ2ðkÞ < 3.7 × 104 mK2 at 95% confidence at comoving scale k ¼ 0.18 hMpc−1
and z ¼ 6.8, which is consistent with published limits [8,12–15]. We also include a simplistic thermal noise calculation (dashed line),
based on our observed system temperature. Though it is not directly comparable to our measurements, since it has different window
functions, it does show that most of our measurements are consistent with thermal noise. For comparison, we also show the theoretical
model of [71] (which predicts that reionization ends before z ¼ 6.4) at the central redshift of each bin. While we are still orders of
magnitude away from the fiducial model, recall that the noise in the power spectrum scales inversely with the integration time, not the
square root.
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Figure 8.12: One dimensional power spectra for the two polarizations of the high sub-band

(z ⇡ 6.5). The line colors are the same as for Figure 8.10, except that the solid black

theoretical model is for x
i

= 0.96.

646 G. Paciga et al.

Figure 11. Power as a function of the total wavenumber k =
√

k⊥
2 + k∥

2. Each point represents a different (k⊥, k∥) pair; there is no binning in k. Colours
indicate the number of SVD modes removed; 0 (blue), 4 (green), 8 (red), 16 (cyan) and 32 (purple) are shown. The boxed region at k ≈ 0.5 is shown inset,
with nearby points each of the three marked k spread out slightly for clarity. The best limit at 2σ is (248 mK)2 at 0.50 h Mpc−1 achieved with four SVD modes
removed. The solid line shows the predicted 3D power spectrum from Iliev et al. (2008) assuming a 30 mK signal.

correction, making this measurement an upper limit on the actual
21 cm signal.

5 C O N C L U S I O N

Using an SVD as a foreground removal technique and a simulated
signal to quantify the loss of a real 21 cm signal the SVD may
cause, we have calculated an upper limit to the H I power spectrum
at z = 8.6 of (248 mK)2 at k = 0.50 h Mpc−1. The k⊥ component
was found using the median power in annuli of the (u, v) plane,
while a Hermite window was used to sample the k∥ direction. This
is in contrast to our previous work with a piecewise-linear filter
which operated only in the frequency direction and carried with it
an implicit k∥ window.

This limit is dependent on the method one chooses to calculate
the transfer function between the real 21 cm signal and the observed
power. Both the k⊥ and k∥ behaviour of the foreground filter chosen
needs to be taken into account. While the semi-Hermite method
chosen uses a simulated signal with power in a limited k∥ window,
and may miss interactions between the SVD filter and the signal
over larger k∥ bands, we believe it to give the most reliable estimate
of the transfer function and a suitably conservative estimate on the
final upper limit.

Had we instead used the full Hermite approach described, this
limit would have been (260 mK)2. That this second approach gives a
similar value suggests that this limit is a fairly robust one. The differ-

ence can likely be attributed in part to the simplifying assumptions
necessary when deriving the analytical Hermite windowing func-
tion. We also consider the current result to be more robust than that
reported previously in Paciga et al. (2011). While the previous limit
was considerably lower, this can be accounted for by many factors;
the different k scale, the change in foreground filter, several minor
changes in the analysis pipeline detailed in Section 2 and most sig-
nificantly the fact that this is the first time a transfer function has
been used to correct for signal lost in the foreground filter. Without
such a correction, our best upper limits with the SVD foreground
filter may have been incorrectly reported as low as (50 mK)2.

This limit still compares favourably to others established in the
literature which are of the order of several Kelvin (e.g. Bebbington
1986; Ali et al. 2008; Parsons et al. 2010). Recently, after submission
of our paper, PAPER (Parsons et al. 2013) claimed an upper limit
of (52 mK)2 at k = 0.11 h Mpc−1 and z = 7.7. However, it is
not documented whether signal loss from their primary foreground
filtering step (their section 3.4) has been accounted for and so it is
not clear how to compare their result to ours. LOFAR has begun
publishing initial results from reionization observations, but have
so far focused on much longer scales (ℓ ≈ 7500) (Yatawatta et al.
2013).

In Paciga et al. (2011), we considered a model with a cold inter-
galactic medium (IGM), a neutral fraction of 0.5 and fully ionized
bubbles with uniform radii. In such a model, this current limit
would constrain the brightness temperature of the neutral IGM to
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Constraining Astrophysics of the EoR 
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Joint fits over all redshifts

•  Optimistic level constraints (100σ+) reduce errors to < 5 % level 
•  Much higher accuracy than likely possible! 

 
•  Foreground subtraction is valuable for recovering physics 

Pober et al. (2014) 
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Observing strategy Parameter x̄H I

(with/without modelling uncertainty) ⇣0 Rmfp (Mpc) log10(Tmin
vir ) z = 8 z = 9 z = 10

100 deg2 @ 1000 h (without) 30.66+1.20
�1.11 15.94+1.77

�1.42 4.49+0.02
�0.02 0.48+0.01

�0.01 0.71+0.01
�0.01 0.84+0.01

�0.01

1000 deg2 @ 100 h (without) 30.25+1.02
�1.07 15.43+0.31

�1.03 4.48+0.02
�0.02 0.48+0.01

�0.01 0.70+0.01
�0.01 0.83+0.01

�0.01

10 000 deg2 @ 10 h (without) 28.71+0.96
�0.82 14.22+0.22

�0.19 4.43+0.02
�0.02 0.47+0.01

�0.01 0.69+0.01
�0.01 0.82+0.01

�0.01

100 deg2 @ 1000 h (with 10 per cent) 30.68+2.44
�2.18 15.49+2.21

�1.94 4.49+0.05
�0.05 0.48+0.02

�0.02 0.71+0.01
�0.01 0.84+0.01

�0.01

1000 deg2 @ 100 h (with 10 per cent) 30.62+2.68
�2.33 15.12+1.95

�1.66 4.49+0.06
�0.06 0.49+0.02

�0.02 0.71+0.01
�0.01 0.84+0.01

�0.01

10 000 deg2 @ 10 h (with 10 per cent) 30.70+3.44
�2.84 14.96+2.05

�1.69 4.49+0.07
�0.07 0.48+0.02

�0.02 0.71+0.02
�0.02 0.84+0.01

�0.01

100 deg2 @ 1000 h (with 25 per cent) 31.68+6.08
�4.45 14.81+2.90

�3.04 4.51+0.11
�0.11 0.49+0.04

�0.04 0.71+0.03
�0.03 0.84+0.02

�0.02

1000 deg2 @ 100 h (with 25 per cent) 31.84+6.00
�4.56 14.87+2.90

�3.00 4.51+0.11
�0.11 0.49+0.04

�0.04 0.71+0.03
�0.03 0.84+0.02

�0.02

10 000 deg2 @ 10 h (with 25 per cent) 32.10+6.87
�4.97 14.81+2.91

�3.01 4.52+0.12
�0.12 0.49+0.05

�0.04 0.71+0.03
�0.03 0.84+0.02

�0.02

Table 2. Summary of the median recovered values (and associated 16th and 84th percentile errors) for our three EoR model parameters,
⇣0, Rmfp and T

min
vir and the associated IGM neutral fraction, x̄H I

for all considered observing strategies (with a 10 and 25 per cent
modelling uncertainty and without a modelling uncertainty). Our fiducial parameter set is (⇣0, Rmfp, log10T

min
vir ) = (30, 15 Mpc, 4.48)

which results in an IGM neutral fraction of x̄H I

= 0.48, 0.71, 0.83 at z = 8, 9 and 10 respectively.

Instrument Parameter Estimate (% uncertainty)

(multi-z) ⇣
⇣
fid

R
mfp

R
fid,mfp

log
10

(Tmin

vir

)

log
10

(Tmin

vir,fid)

LOFAR 1.55 (43.3%) 0.89 (31.1%) 1.06 (6.1%)

HERA 1.03 (12.0%) 1.01 (12.4%) 1.00 (2.0%)

SKA 1.02 (9.4%) 1.04 (13.5%) 1.00 (1.3%)

Table 3.

pletely overwhelming any potential gains by shortening the
observing times (decreasing the cosmic variance). In e↵ect,
all observing strategies now have the same sensitivity to the
21 cm PS on large scales. On smaller scales, the decreased
thermal noise contribution from the deep and medium-deep
surveys relative to the shallow survey ensures these are pre-
ferred for recovering the EoR constraints in the presence
of a modelling uncertainty. However, as noted in GM15,
increased sensitivity on small scales does not significantly
aid EoR constraints across multiple epoch observations, as
the reionisation history is still adequately sampled from the
large-scales.

Finally, as in Section 4.1, with SKA1–low we can com-
bine all three observing strategies to provide improved over-
all constraints on our EoR parameters. In the case of our
25 (10) per cent modelling uncertainty, we then find the im-
proved constraints of 10.5 (4.9) per cent on ⇣, 10.7 (6.9)
per cent on Rmfp and 1.4 (0.7) per cent on log10T

min
vir . This

highlights the importance of being able to accurately model
the astrophysics of the EoR process. Although, EoR model
dependent, we find up to a factor of 4-5 (2-3) reduction in
the overall fractional precision of the EoR model parameters
for our 25 (10) per cent modelling uncertainty, respectively.
This exemplifies the critical need to further increase and de-
velop our understanding of the modelling of the EoR physics,
in preparation for the quality of data expected from second
generation experiments such as SKA1–low and HERA.

As eluded to previously, our discussions have focused
solely on the recovery of EoR constraints from the 21 cm
PS. While beyond the scope of this current work, constraints

on the EoR model parameters could be further improved by
considering alternative statistics of the 21 cm signal. These
statistics, such as the bispectrum (e.g. Shimabukuro et al.
2015) and other non-Gaussian probes of the 21 cm signal,
would likely benefit from increased sensitivity to small and
intermediate scales and in turn could be more descriptive
statistics than the 3D spherically average 21 cm PS.

5 CONCLUSION

The reionisation epoch is astrophysics rich, probing the
growth, formation and evolution of the first stars and galax-
ies and their physical impact on the IGM ionisation state
and temperature. With this epoch most readily observed
by the redshifted 21 cm hyperfine transition of neutral hy-
drogen, dedicated radio interferometers, such as SKA1–low
should be able, in the near future, to tap into this rich source
of information. For this, it is of vital importance to further
improve our ability to numerically model these complex pro-
cesses to extract as much information as possible from these
sensitive observations. However, it is just as important that
these instruments are tuned and optimised to yield as high
quality a detection of the EoR epoch as possible.

Using the MCMC based EoR analysis tool 21CMMC

(Greig & Mesinger 2015), we explored the optimisation of
SKA1–low. Recently, a generalised final design for SKA1–
low was announced, outlining a ⇠130 000 dipole antenna
array, a 50 per cent reduction of the originally planned first
stage instrument. Therefore we explored how best to dis-
tribute these available resources to optimise SKA1–low for
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Radio Frequency Interference (RFI) 
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Ionosphere 
• Opaque to radio waves 
below 10 ~ 50 MHz 
(depending on 
conditions) 
•  Limits dark ages science 

from the earth 

• Refractive effects in 
EoR band adds extra 
degree of difficulty 



Improving Foreground Models 

• Jackknife tests new algorithms, foreground models 
•  Including sources away from primary field of view 
improves high k|| modes 

Pober et al., 2016 

Main Field Only 
Main Field +  Diffractive 

Sidelobes Difference 



Cold reionization 

• Power spectrum brightness can be dominated by 
small TS 

• TS strongly coupled to physical gas temperature: 
need cold IGM 

– 2 –

observational campaigns to detect the spatial power spectrum of 21 cm fluctuations from the Epoch

of Reionization (EoR).

Initial measurements from a 32-element PAPER instrument in 2011 were recently used to

place an upper limit on the 21 cm power spectrum at redshift 7.7 (Parsons et al. 2014). This

upper limit was stringent enough to place constraints on the temperature of the IGM, requiring

some mechanism for heating the intergalactic gas, and ruling out a universe which had cooled

adiabatically down to z = 7.7. The goal of the present work is to expand on this analysis by using

the more stringent upper limit in our companion paper (Ali et al.), and by using a more physically-

motivated, simulation-based framework for interpreting the measurement in terms of IGM physics.

We review the measurements of Ali et al. in §2, and outline our methodology and framework in §3.

We present our constraints on the IGM temperature in §4, and discuss their physical implications

in §5. We conclude in §6. Unless otherwise stated, all calculations assume a closed ⇤CDM universe

with ⌦m = 0.27, ⌦⇤ = 0.73, and h = 0.7.

2. Data and Measurements

Here I will review Zaki’s results.

3. Methodology

As a way of placing these results in the context of a large and uncertain parameter space, we

use the following ansatz. We identify three parameters as being the dominant driver of the 21 cm

power spectrum amplitude and shape: the global average spin temperature of the emitting gas

(which at these redshifts is set by the kinetic temperature of the gas), the global neutral fraction,

and the temperature of the cosmic microwave background at the redshift of the measurement. We

discuss the validity of this assumption below, but first we outline the role of these three parameters

in setting the power spectrum amplitude.

It is worthwhile to keep the brightness temperature contrast between the 21 cm signal and the

CMB (�Tb) in mind as we discuss the e↵ect of various parameters:

�Tb(⌫) ⇡ 9xHI(1 + �)(1 + z)
1
2


1�

TCMB(z)

TS

� 
H(z)/(1 + z)

dvk/drk

�
mK, (1)

where xHI is the global neutral hydrogen fraction, z is the redshift, TCMB is the temperature of

the cosmic microwave background, TS is the spin temperature, H(z) is the Hubble parameter, and

dvk/drk is the gradient of the proper velocity along the line of sight (Furlanetto et al. 2006). If

we define a fractional brightness temperature perturbation, �21(~x) ⌘ [�Tb(~x)� ¯�Tb]/ ¯�Tb, the power

spectrum, P (~k), is given by the ensemble average of the square of the spatial Fourier transform of



IGM Temperature Limits 

• 21cmFAST 
simulations to explore 
parameter space     
TS vs. xHI 

• Gray region ruled out 
at 95% confidence by 
PAPER 
measurements 

Pober et al. (2015) 



Heating the universe 
• Fiducial TK >> TCMB 

• How much heat do the 
observed high z 
galaxies provide? 
• Depends on 3 

parameters: fX, fabs, ρSFR 

• PAPER constraints cut 
into parameter space 

Pober et al. (2015) 
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Heating the universe 
• Fiducial TK >> TCMB 
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State of the Art 

PRELIMINARY 



Self-consistent model 
• Galaxy population 
that can reionize the 
universe (Robertson 
et al. 2015) 

• Minimally efficient 
heating (e.g. Fialkov 
et al. 2014) brings 
IGM above PAPER 
limits 
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MCMC Constraints 
•  21CMMC (Greig & 

Mesinger 2015) explores 
reionization model 
parameter space 
efficiently 

• Marginalizing over 
reionization parameters 
lowers TS limits 

•  Including other priors 
(McGreer et al. 2015 + 
Planck) helps 
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MCMC Constraints 
•  21CMMC (Greig & 

Mesinger 2015) explores 
reionization model 
parameter space 
efficiently 
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reionization parameters 
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How can we be assured a “first detection” 
is cosmological? 

• Characteristic signatures of cosmological signal (e.g., 
“knee”, rise and fall vs. z, redshift-space distortions) 

Ø Not ubiquitous to all models, not necessarily detectable with first 
generation instruments 
 

Pober et al. (2014) 



How can we be assured a “first detection” 
is cosmological? 

• Cross correlation studies: galaxies/Lyα emitters, FIRB, 
spectral line intensity mapping 

 
Ø Require extremely large survey areas compared to current 

telescopes or new, dedicated instruments 



Holistic analysis with other probes 
•  Quasar absorption 

spectroscopy can be used 
to constrain xHI at 
moderate z 

 
•  McGreer et al. (2015) 

model independent limit 
(counting dark pixels):   
xHI < 0.06 + 0.05 (1σ) @ 
z=5.9 

•  21CMMC can translate 
into quantitative upper 
limits on 21 cm signal 
Ø Null test for end of 

reionization  

Upper limit on the neutral fraction at z ∼ 5–6 5
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Figure 2. Lyα forests of J0841+2905 (zQ = 5.98, top panel) and J1306+0356 (zQ = 6.02, bottom panel). Pixel flux measurements are
indicated with bars, and shown in gray when flux is detected (according to the 2σ threshold), and black for dark pixels. Dark pixels with
flux ≈ 0 are indicated with small squares at negative fluxes. The smooth red line shows the 2σ noise level and defines the dark threshold.
The orange line shows the unbinned noise, scaled to match the 1σ binned noise level. This highlights the placement of the bins between
the stronger sky lines. Finally, the dashed magenta line shows the fitted continuum scaled by e−τ , with τ = 2.5. Pixels are rejected when
the binned noise exceeds this threshold, as in the case with J0841+2905 for three pixels at z > 5.8 (shown as hatched bars).
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Figure 3. Comparison of the Lyα and Lyβ forests for
J0836+0054 aligned in absorption redshift (note that the flux
scale for the Lyβ pixels is inverted for easier comparison). The 2σ
noise level is shown with a red line. The excess of dark pixels in
the Lyβ forest is likely due to contamination from the overlapping
Lyα forest at 1 + zα = (λβ/λα)(1 + zβ). The pixels are aligned
in redshift. Comparing the two forests shows that only two pixels
are dark in both.

of J1306+0356 in the same redshift range. This is likely a
consequence of the lower dynamic range of the J0841+2905
spectrum, but there could also be contributions from line-
of-sight variance. This highlights the need for both many
lines-of-sight and high quality spectra when deriving con-
straints from the Lyα forest.

The Lyβ forest yields a stronger constraint on the frac-
tion of dark pixels, as the relative weakness of the Lyβ tran-
sition compared to Lyα results in greater dynamic range.
The specific ratio of τα/τβ varies from pixel-to-pixel de-
pending on the sub-pixel structure of the IGM (e.g., Songaila
2004; Fan et al. 2006), and the absorption from the under-
lying Lyα forest (see §2). Since we are treating the dark

fraction as a direct upper limit on x̄HI, we do not introduce
any model assumptions about either the clumpiness of the
IGM at z ∼ 5–6 or the nature of the lower-redshift Lyα
forest into our results. In future work, we will attempt to
resolve and model-out the underlying Lyα forest from the
Lyβ region, yielding tighter constraints, albeit at the cost of
introducing model uncertainties (see §7).

In Fig. 3, we show a comparison of the Lyα and Lyβ
forests for J0836+0054, overlayed in absorption redshift.
The 2σ noise level is shown with a red line, and dark pixels
identified with this flux threshold (§3.1) are shown in black.
As mentioned above, the contamination of the Lyβ by the
lower-redshift Lyα forest can result in dark pixels even when
the corresponding pixels in Lyα are not dark. Pixels corre-
sponding to pre-overlap, highly neutral regions must be dark
in both Lyα and Lyβ. In this figure there are two such pix-
els. The intersection of dark pixels in both forests provides
the strongest possible constraint available from this method;
however, due to the limited dynamic range the presence of
dark pixels in both forests is a necessary but not sufficient
indication of neutral IGM.

Finally, it is important to remember that each of our
pixels is a non-trivial ∼ 3.3 Mpc in size. As already dis-
cussed, a single dark pixel is sufficiently large to be a poten-
tial tracer of pre-overlap HI, especially when weighted by the
LOS impact parameter. In fact, extended dark patches need
not be a good tracer of reionization in high-redshift spec-
tra, especially when the spectra begin to saturate (Mesinger
2010).

5 RESULTS

The main results of this work are presented in Fig. 4. The
covering fractions of dark pixels computed using the flux
threshold (§3.1) and negative pixel (§3.2) statistics are di-
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Pushing to Lower Frequencies 

• Prototype work to improve 
feed response below 100 
MHz 

• Recent predictions for “first 
stars” signal are promising 

• Potential to distinguish 
models of dark matter and 
sources of heating 
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