

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Hadron Calorimeter Questions

AVT

8-26 2016

$ln[246]:= Do[los[k1000, 14, 2.8 \times 1000, 10, 1, k], \{k, 20, 100, 20\}]$

Eo 20000 dw 2.76777×10 ⁻²¹	Pg 14 den[0,0] 9.57301×10 ⁷	c 10 jcav 2.53745×10 ⁻⁷	a 7.57084 dj[0,0] 1.71842×10 ⁻¹⁰	frf 2800. djt 3.27091×10 ⁻⁹	ind 1 djt/jcac 0.0128905	ind2 20
Eo 40000 dw 7.08525×10 ⁻²¹	Pg 14 den[0,0] 9.57301×10 ⁷	c 10 jcav 1.01498×10 ⁻⁶	a 7.57084 dj[0,0] 4.399×10 ⁻¹⁰	frf 2800. djt 8.09679×10 ⁻⁹	ind 1 djt/jcac 0.00797729	ind2 40
Eo 60000 dw 1.29289×10 ⁻²⁰	Pg 14 den[0,0] 9.57301×10 ⁷	c 10 jcav 2.28371×10 ⁻⁶	a 7.57084 dj[0,0] 8.02713×10 ⁻¹⁰	frf 2800. djt 1.41933×10 ⁻⁸	ind 1 djt/jcac 0.00621503	ind2 60 1
Eo 80000 dw 2.04674×10 ⁻²⁰	Pg 14 den[0,0] 9.57301×10 ⁷	c 10 jcav 4.05992×10 ⁻⁶	a 7.57084 dj[0,0] 1.27076×10 ⁻⁹	frf 2800. djt 2.16378×10 ⁻⁸	ind 1 djt/jcac 0.00532961	ind2 80
Eo 100000 dw 2.95335×10 ⁻²⁰	Pg 14 den[0,0] 9.57301×10 ⁷	c 10 jcav 6.34363×10 ⁻⁶	a 7.57084 dj[0,0] 1.83364×10 ⁻⁹	frf 2800. djt 3.0478×10 ⁻⁸	ind 1 djt/jcac 0.0048045	ind2 100

$ln[250]:= Do[los[k1000, 14, 2.8 \times 1000, 10, 2, k+1], \{k, 21, 101, 20\}]$

Eo 21000 dw 3.86757×10 ⁻²¹	Pg 14 den[0,0] 9.57301×10 ⁷	c 10 jcav 2.79754×10 ⁻⁷	a 7.57084 dj[0,0] 3.59692×10 ⁻¹¹	frf 2800. djt 5.87223×10 ⁻¹⁰	ind 2 djt/jcac 0.00209907	ind2 22
Eo 41000 dw 1.03516×10 ⁻²⁰	Pg 14 den[0,0] 9.57301×10 ⁷	c 10 jcav 1.06636×10 ⁻⁶	a 7.57084 dj[0,0] 9.62718×10 ⁻¹¹	frf 2800. djt 1.65274×10 ⁻⁹	ind 2 djt/jcac 0.00154988	ind2 42
Eo 61000 dw 1.82607×10 ⁻²⁰	Pg 14 den[0,0] 9.57301×10 ⁷	c 10 jcav 2.36046×10 ⁻⁶	a 7.57084 dj[0,0] 1.69829×10 ⁻¹⁰	frf 2800. djt 2.96692×10 ⁻⁹	ind 2 djt/jcac 0.00125692	ind2 62
Eo 81000 dw 2.76611×10 ⁻²⁰	Pg 14 den[0,0] 9.57301×10 ⁷	c 10 jcav 4.16205×10 ⁻⁶	a 7.57084 dj[0,0] 2.57254×10 ⁻¹⁰	frf 2800. djt 4.48422×10 ⁻⁹	ind 2 djt/jcac 0.00107741	ind2 82
Eo 101000 dw 3.82291×10 ⁻²⁰	Pg 14 den[0,0] 9.57301×10 ⁷	c 10 jcav 6.47114×10 ⁻⁶	a 7.57084 dj[0,0] 3.55539×10 ⁻¹⁰	frf 2800. djt 6.19401×10 ⁻⁹	ind 2 djt/jcac 0.000957175	ind2 102

The cavity considered is a box 7.5 cm x 7.5 cm x 10 cm. The E field is along the 10 cm side and the field is aligned with the beam direction. Frf = 2800 MHz. Q? 28000 cycles in 10 usec! Do you put in short bursts of RF in 20 ns gaps? Probably not. Need power input!! When these are stacked together they sample the beam:

Fermilab

- Some Questions on readout
- 1. Measure Energy loss or freq shift?
- Energy loss

- 2. The density in the cavity is decreasing in time due to recombination. This can be used to determine the number of cycles averaged over. If this is set to be 10 bunches = 200 ns there would be essentially 50 samples during the 10 usec dump. Tune the recombination for the 200 ns and the cavity length so that 10 bunches give 1% loss or a 50% drop in cavity voltage over 10 usec.
- 3. Messy. As the voltage goes down. So does the energy loss per cycle. Non- linear response. Do you feed energy to cavity during the dump?

- Frequency Shift readout.
- 1. Cavity frequency response to change in dielectric constant is very fast...essentially 1 cycle.
- 2. The frequency shift will integrate the beam if there is constant cavity voltage and no recombination.
- 3. But cavity voltage is dropping due to Q and energy loss.
- A. Need to operate where E/P <.02 V/cm/mmHg where the mobility is a constant independent of Vrf. See plots on slide 2. This will also reduce electron dw/cycle and hence cavity loading. E=15 V/cm and 760 mmHg give "E/P" = .02. Hydrogen linear to higher E/P and less ne.
- 5. Response time set by how long it takes to measure freq.

