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NOvA Overview

• Alternate horizontal and vertical planes of liquid scintillator filled 
cells 

• radiation length of 38 cm (6 cell widths, 10 cell depths) 

• read out 500 us windows, 10 microsecond NuMI beam 

• ND 100 meters underground, FD on surface
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Far Detector 550 μs Readout Window
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Far Detector 10 μs NuMI Beam Window
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Near Detector 10 μs NuMI Beam Window
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Events in NOvA
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NOvA Timing
• Sample APD at 2 MHz (FD) or 8 

MHz ND) 

• Read out four samples for hits 
over threshold, fit for pulse-height 
and time
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Reconstruction Challenges

• Far Detector is on the surface, sees 150 kHz of 
cosmics,  need 107 cosmic rejection 

• Near Detector sees 3-4 neutrino interactions per 10 
microsecond beam spill. 

• Our algorithms work well, have been through two 
analyses.  Currently evaluating a few reconstruction 
improvements for the next cycle.
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Reconstruction Chains
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Slicing
• Reconstruction foundation.  Downstream reco assumes 

each slice is one physics interaction 

• Current: DBSCAN algorithm1 clusters based on 4D 
space-time metric 

• Produces 3D clusters.  Have seen a couple percent 
effect of multiple interactions being merged, largely due 
to triangle-inequality failures of the metric for slices 
aligned in time and Z, but spatially separated in X and Y.

10

1M.	  Ester,	  et.	  al.,	  A	  Density-‐Based	  Algorithm	  for	  Discovering	  Clusters	  in	  Large	  SpaAal	  Databases	  with	  Noise	  (1996)	  



Hough Transform
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• Modified'algorithm'where'
pairs'of'points'are'mapped'into'
hough space,'more'robust'
against'noise.

• Points'near'lines'are'removed'
in'an'iterative'process'in'order'
to'find'finer'structure.

Fernandes&'Oliveira,'Pattern'Recognition'41'(2008)'299F314

The'iterative'line'finding'process'
allows'the'small'line'seen'here'to'
become'significant.

90%

In'90'%'of'all'charged'
current'events'the'
prominent'hough line'comes'
within'11'cm'of'the'event'
vertex.



Vertexing
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• The$algorithm$fits$a$model$of$a$single$vertex$and$N$“arms”$to$the$event$by$
minimizing$the$energy$function$below.

• Hough$lines$and$intersections$are$used$as$seeds$ for$arms$and$vertex.
• This$is$a$unique$application$because$the$vertex$location$is$not$known$a$priori.

M.$Gyulassy and$M.$Harlander,$Computer$Physics$Communications,$66$(1991)$32M46.
M.$Ohlsson,$C.$Peterson,$Computer$Physics$Communications,$71$(1992)$77M98.
M.$Ohlsson,$Computer$Physics$Communications,$77$(1993)$19M32.
R.$Fruwirth and$A.$Strandie,$Computer$Physics$Communications,$120$(1999)$197M214.
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Vertexing

13

The$vertex$resolution$for$all$νe
cc$events$is$less$than$5cm$(one$
cell)$in$X$and$Y,$and$8$cm$in$Z.$

Far$Detector$Simulation

X

Y
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Shower Reconstruction: Possibilistic 
Fuzzy K-means clustering
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• “Fuzzy”:(Individual(hits(are(allowed(to(have(membership( in(
multiple(clusters.

• “Possibilistic”:( A(cells(total(membership(cannot(exceed(one,(
but(it(is(not(normalized,(allowing(noise(hits(to(be(unclustered.

• Cluster(number(not(known(a(priori,(start(with(1(cluster(and(
iterate(until(all(hits(are(accounted(for.

• Clustering( is(done(separately(in(each(view(of(the(detector(and(
then(matches(are(made(based(on(cluster(characteristics.
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3"D$View
Matching

YZ%Prong%1

YZ%Prong%2

XZ%Prong%1

XZ%Prong%2

Algorithm does not yet 
support many-to-one 
matching between views



CVN
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A. Aurisano and A. Radovic and D. Rocco et. al, JINST 11 P09001 (2016)
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Filter
Concatenation

• Architecture adapted from GoogLeNet
• C. Szegedy et al., arXiv:1409.4842
• Input is 80 cell x 200 plane detector pixel map
• Each event view processed separately and then merged

• Network implemented and trained in the Caffe 
Framework (Y. Jia et al., arXiv:1408.5093)

• Trained on 4.7 million simulated events on Fermilab 
GPU cluster

• Output classifies neutrino interaction type (νμ,ντ,νe,NC)
• Used in electron neutrino analysis and neutral current.  
• Performance gain over previous classifiers equivalent to adding 

30% more detector mass
• Caffe framework available on Scisoft, experiment independent
• We have deployed our Caffe networks in ART framework for 

evaluation



CVN Plans
• Developing Prong-based network.  ID each individual 

prong as a particle 

• Go one step further with semantic segmentation.  ID 
each pixel by particle and then reconstruct objects 

• Exploring network speed optimizations 

• Adding timing information to network (upward-going 
muons, michel tagging, information from other slices). 

• and more
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What are we working on?
• Evaluating new slicing algorithm.  2D temporal 

clustering, followed by spatial clustering and view 
matching to reduce some pile-up effects 

• New vertex algorithm (algebraic hough transform, 
improves speed and resolution, reduces 2-step 
process to one) 

• Improve 2D->3D merging of showers (allow multiple-to-
one matching, consider 3D from the start) 

• CVN developments
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Backup
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Evaluating Signal Efficiency
• Remove cosmic ray muon from FD 

events in data and simulation
• Apply selection to remaining 

bremstrahlung shower to 
benchmark simulation of electron 
selection
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• EM showers should be well modeled, check 
if selection efficiency differences come from 
hadronic side

• Remove reconstructed muons from selected 
νμ events, replace with simulated electron 
(MRE)
• better than 1% agreement between 

efficiency for selecting data MRE events 
and efficiency for selecting MC MRE 
events
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Energy Estimation

• Muon dE/dx used in length-to-energy conversion
• Hadronic energy estimated calorimetrically from off-track hits
• ~7% resolution on neutrino energy
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Reconstructed muon energy (GeV)
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Convolutional Neural Networks

• Showing a muon neutrino interaction and the first layer of feature maps 
extracted from the convolutional kernels

FEATURE MAPS

:
:
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Convolutional Neural Networks

• Showing a electron neutrino interaction and the first layer of feature maps 
extracted from the convolutional kernels

• The strong features extracted are the shower as opposed to the muon track

FEATURE MAPS

:
:


