
Distributed Computing
In IceCube

David Schultz, Gonzalo Merino, Vladimir Brik, and Jan Oertlin
UW-Madison

2

3

Outline

▻ Grid History and CVMFS
▻ Usage / Plots
▻ Pyglidein
▻ Issues / Events:

4

▸ High memory GPU jobs
▸ Data reprocessing
▸ XSEDE allocations
▸ Long Term Archive

Grid History

5

Pre-2014 Setup

6

▻ Flock to UW
▸ CHTC, HEP, CS, …
▸ GLOW VOFrontend (GLOW VO)

▻ IceCube simulation framework doing local
submissions at ~20 sites

2014 to 2015 Setup

7

▻ Flock to UW
▸ CHTC, HEP, CS, …
▸ GLOW VOFrontend (IceCube VO)

▹ Some EGI, CA sites via OSG glideins

▻ IceCube simulation framework doing local
submissions at ~10 sites

2016 Setup

8

▻ Flock to UW
▸ HEP, CS, …
▸ GLOW VOFrontend (IceCube VO)

▹ Some EGI, CA sites via OSG glideins

▻ Pyglidein to all other sites
▸ CHTC for better control of priorities

▻ IceCube Sites
▸ CA-Toronto
▸ CA-McGill
▸ Manchester
▸ Brussels

Sites on GLOW VOFrontend (IceCube VO)

9

▻ Notable OSG Sites
▸ Fermilab
▸ Nebraska
▸ CIT_CMS_T2
▸ SU-OG
▸ MWT2
▸ BNL-ATLAS

▸ DESY
▸ Dortmund
▸ Aachen
▸ Wuppertal

▻ IceCube Sites
▸ CA-Toronto
▸ CA-Alberta
▸ CA-McGill
▸ Delaware
▸ Tokyo

Sites on Pyglidein

10

▻ XSEDE
▸ Comet
▸ Bridges
▸ XStream

▸ DESY
▸ Mainz
▸ Dortmund
▸ Brussels
▸ Uppsala

CVMFS

11

CVMFS History

▻ icecube.opensciencegrid.org
▸ Started: 2014-08-13
▸ Using OSG Stratum 1s: 2014-10-29

12

▻ Stats
▸ Total file size: 300GB
▸ Spool size: 45GB
▸ Num files: 2.9M

▻ Yearly growth
▸ Total file size: 120GB
▸ Spool size: 10GB
▸ Num files: 1.2M

CVMFS Future

▻ Data federation /cvmfs/icecube.osgstorage.org?
▸ Data processing and analysis: no use case

▹ Most data files are single job, or small set of jobs
▸ One possible use case: realtime alerts

▹ Problem: they need the data instantly
▹ No time for file catalog to update

13

CVMFS Future

▻ User software distribution
▸ ~300 analysis users

▹ ~40 currently use the grid
▸ Currently transfer ~100MB tarfiles

▹ Mostly duplicates, with small additions
▸ Plan: hourly rsync from user filesystem

▹ Use a directory in the existing repository?
▹ Make a new repository?

14

Grid Usage

15

CPU - Campus Pool

16

Goodput

Badput

CPU - Campus Pool

17

Badput by Site

Badput by Type

CPU - GLOW VOFrontend (IceCube VO)

18

Goodput

Badput

CPU - GLOW VOFrontend (IceCube VO)

19

Badput by Site

Badput by Type

CPU - Pyglidein

20

Goodput

Badput

CPU - Pyglidein

21

Badput by Site

Badput by Type

GPU - GLOW VOFrontend (IceCube VO)

22

Goodput

Badput

GPU - GLOW VOFrontend (IceCube VO)

23

Badput by Site

Badput by Type

GPU - Pyglidein

24

Goodput

Badput

GPU - Pyglidein

25

Badput by Site

Badput by Type

Grid Usage Totals

26

CPU: 18.3M hours GPU: 650K hours Badput: 20%

CPU Goodput GPU Goodput

Pyglidein

27

Pyglidein Advantages

▻ All IceCube sites in a single HTCondor pool
▸ Priority is easier with one control point

▻ Simplified process for new sites to “join” pool
▸ Feedback is positive

▹ “Much better than the old system”
▸ Useful for integrating XSEDE sites

28

Use Case - CHTC

▻ Main shared cluster on campus
▸ We used 6M hours in 2016

▻ Before: flock to CHTC
▸ Priority control on CHTC side, no control locally

▻ Now using pyglidein
▸ Priority control locally
▸ UW resource: prefer UW users before collaboration

29

Some Central Manager Problems

▻ Lots of disconnects
▸ VM running collector, negotiator, shared_port, CCB:

▹ 8 cpus, 12GB memory
▹ Pool password authentication
▹ 5k-10k startds connected
▹ 10k-40k established TCP connections

30

Some Central Manager Problems

▻ Suspect a scalability issue
▸ Frequent shared_port blocks and failures
▸ Frequent CCB rejects and failures
▸ Suspicious number of lease expirations

▻ Pyglidein idle timeout is 20 minutes
▸ Lots of timeouts even with idle jobs in queue

▻ Ideas welcome

31

Future Work

▻ Troubleshooting
▸ Easier gathering of glidein logs
▸ Better error messages
▸ Ways to address black holes

▹ Remotely stop the startd
▹ Watchdog inside glidein

32

Future Work

▻ Monitoring
▸ Store more information in condor_history job records

▹ GLIDEIN_Site, GPU_Type ...
▸ Better analyzing tools for condor_history

▹ All plots today using MongoDB + matplotlib
▹ Interested in other options (ELK?)
▹ Any options for getting real-time plots?

▸ Dashboard showing site status (similar to SAM, RSV)

33

Future Work

▻ Wishlist for this year
▸ Automatic updating of the client
▸ Restrict a glidein to specific users

▹ Add special classad to match on?

▸ Use “time to live” to make better matching decisions
▸ Work better inside containers

34

Issues / Events Highlights

35

GPU Job Memory Overuse

36

▻ 2.5% of GPU jobs go over memory request

GPU Job Memory Overuse

37

GPU Job Memory Overuse

▻ No way to pre-determine memory requirements
▻ But we do have access to large partitionable

slots (and we control the startd on Pyglidein)
▸ Dynamically resize the slot with available memory?
▸ Evict CPU jobs so the GPU job can continue?
▸ Can we do this with HTCondor?

38

Data Reprocessing - “Pass2”

39

Data Reprocessing - “Pass2”

▻ IceCube will reprocess data from 2010 to 2015
▸ Improved calibration, updated software
▸ Uniform multi-year dataset
▸ First time we went back to RAW data

▹ Previous analyses all used the online filtered data
▸ We want to use the Grid

▹ First time data processing will use the Grid (only simulation
and user analysis so far)

40

Data Reprocessing - “Pass2”

41

Season Input Data Output Data Estimated CPU Hrs
2010 148 TB 44 TB 1,250,000

2011 97 TB 47 TB 1,263,000

2012 163 TB 53 TB 1,237,000

2013 139 TB 61 TB 1,739,000

2014 149 TB 58 TB 1,544,000

2015 78 TB 56 TB 1,513,000

Totals 774 TB 319 TB 8,546,000

Data Reprocessing - “Pass2”

42

▻ Requirements per job:
▸ 500 MB input, 200 MB output
▸ 4.2 GB memory
▸ 5-8 hours
▸ Currently SL6-only

Data Reprocessing - “Pass2”

43

▻ 10% sample already processed for verification
▸ Have been able to access 3000+ slots

▻ Full reprocessing estimated to take 3 months

XSEDE Allocations

44

2016 XSEDE Allocations

45

GPUs in System Allocated SUs Used SUs
(2/27/2017)

%

Comet 72 K80 5,543,895 3,132,072 57

Bridges 16 K80
+32 P100 in Jan 512,665 172,025 34

2016 XSEDE Allocations

46

▻ Issue: large Comet allocation compared to actual
GPU resources
▸ We did only ask for GPUs in the request
▸ Impossible to use all allocated time as GPUhours

▻ Extended allocation through June 2017
▸ A chance at using more of the allocation

Future Allocations

47

▻ Experience with Comet / Bridges very useful
▸ Better understanding of XSEDE XRAS process
▸ Navigating setup issues at different sites

▻ Next focus: larger GPU systems
▸ Xstream
▸ Titan?
▸ Bluewaters?

Long Term Archive
48

Long Term Archive

49

▻ Data products to be preserved for long time
▸ RAW, DST, Level2, Level3 ...

▻ Two collaborating sites providing tape archive
▸ DESY-ZN and NERSC

▻ Added functionality to existing data handling sw
▸ Index and bundle files in the Madison data warehouse
▸ Manage WAN transfers via globus.org
▸ Bookkeeping

Long Term Archive

▻ Goal is to get ~40TB/day (~500MB/s)
▸ ~3 PB initial upload
▸ +700 TB/yr

▹ ~400 TB/yr bulk upload in April (disks from South Pole)
▹ ~300 TB/yr constant throughout the year

50

Long Term Archive

▻ Started archiving files in Sept 2016
▻ uw → nersc#hpss:

▸ Direct gridftp to tape endpoint
▸ ~100MB/s: 12 concurrent files, 1 stream/file

51

Long Term Archive

52

▻ Now trying two-step transfer
▸ Buffer on NERSC disk before transfer to tape

▻ uw → nersc#dtn:
▸ Gridftp to disk endpoint
▸ ~600-800 MB/s: 24 concurrent files, 4 streams/file

▻ NERSC internal disk→tape: >600MB/s

Long Term Archive

53

→Tape

→Disk→Tape

54

Summary

▻ CVMFS
▸ Working well for production
▸ Potential expansion to users

▻ Grid
▸ IceCube using 2 glidein types
▸ More resources than ever
▸ Still much work to be done

▻ Issues & Events
▸ GPU memory problem
▸ “Pass2” data reprocessing
▸ XSEDE allocations
▸ Long term archive

