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“the world inhabited by bacteria and other microorganisms is perilous.
these tiny creatures must cope with the vicissitudes of an environment
that undergoes perpetual alterations in temperature, salinity, pH,

availability of nutrients, challenged by antibiotics, mutagents, toxins,

radiation...”
Dubnau and Losick, 2006



Environmental variation is commonplace yet unpredictable across
biological systems from the adaptive immune system, the
microenvironment in cancerous neoplasms, to populations of pathogens
under drug pressure.
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Environmental variation is commonplace yet unpredictable across
biological systems from the adaptive immune system, the
microenvironment in cancerous neoplasms, to populations of pathogens
under drug pressure.

How do populations survive environmental stochasticity”? How do they
manage to persist and keep one's footing on an ever-changing landscape?

Can organisms prepare for this environmental stochasticity?

Can evolution prepare populations for this environmental
stochasticity?



“another rule which may prove useful can be derived from our theory.
This is the rule that it is advisable to divide goods which are exposed to
some danger into several portions rather than risk them all together”

Daniel Bernoulli, 1738

same genes, different phenotypes

wrinkled and smooth Pfluorescens lines
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the more transcriptionally diverse parasite adapted more rapidly to
periodic changes in temperature meant to mimic periodic febrile

episodes
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ohenotypic variance as an evolutionary strategy in uncertain environments
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pbacterial persistence

High levels of antibiotic tolerance and persistence are induced by the

commercial anti-microbial triclosan
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Banned from consumer soaps effective September 2017 by the US Food and Drug
Administration, the antimicrobial triclosan remains approved for use in products ranging from
toothpaste to cleansers employed in healthcare settings'’. In contrast to bactericidal antibiotics,
which kill pathogens outright, triclosan is a bacteriostatic drug that inhibits growth by targeting

enoyl-acyl carrier protein reductase to interfere with early steps in fatty acid synthesis’.

1000-fold higher than the expected frequency of persisters in an untreated population®. At the 20
hour time point, 90,000 cells per mL were viable in 100 ng/mL ciprofloxacin and 30 cells per
mL in 1000ng/mL ciprofloxacin. In contrast, we observed only 20 cells/ml after 20 hours of
growth in 100 ng/mL ciprofloxacin alone. Cells cultured in 1,000 ng/mL ciprofloxacin alone had

no observable colonies (<10 cells per mL).

Westfall and Levin, Biorxiv, 2016



1. genetically identical populations, with two or more available phenotypes,
with each phenotype beneficial in a different environmental state

2. phenotypic states are partly heritable by offspring cells; rates of change
greater than genetic mutation

3. the rate of ‘phenotypic mutation’ is itself under genetic control
(Levin and Rosen, 20006)



1. genetically identical populations, with two or more available phenotypes,
with each phenotype beneficial in a different environmental state

2. phenotypic states are transient, partly heritable by offspring cells; rates of
change greater than genetic mutation

3. the rate of ‘phenotypic mutation’ is itself under genetic control
(Levin and Rosen, 20006)

By tuning the rates at which variability is produced,
populations may increase their long-term adaptability.

What is the evolutionary advantage of a phenotypically-plastic allele”
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What is the fixation probability of an allele that increases phenotypic
variability?
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What is the fixation probability of an allele that increases phenotypic variability
(or, alternatively, allele controlling variation in regulatory function at other
protein-coding loci)?



What is the fixation probability of an allele that increases phenotypic variability?
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What is the fixation probability of an allele that increases phenotypic variability?

population of A individuals Introduce one a individual
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“adaptation in threatened populations is not
Ike ordinary adaptation, it is a race against extinction”

(Maynard Smith, 1989)
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evolutionary rescue: one abrupt change in environment
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analytical intuition

evolutionary dynamics of initial mutant with a beneficial phenotype

mutation selection balance: effective selective coefficient of @ allele
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analytical intuition

evolutionary dynamics of initial mutant with a beneficial phenotype

mutation selection balance: effective selective coefficient of @ allele
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evolutionary dynamics of initial mutant with a deleterious phenotype

probability of switching to high fitness phenotype before loss:
mutation as time-inhomogeneous Poisson process
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evolutionary dynamics
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changing environments
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There is an optimum phenotypic memory that maximizes
fixation probability, evolutionary rescue, times to extinction of
an invader allele with phenotypic variance.

What does this mean for treatment strategies”

Choose strategies that minimize probability of invasion and eventual fixation:
effective interventions are treatments that disrupt the molecular memory to either
extreme.
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Life’s infinite variety is the result of a single mechanism: natural selec-
tion. Even more remarkable, this mechanism is of a type very familiar
to computer scientists: iterative search, where we solve a problem by
trying many candidate solutions, selecting and modifying the best
ones, and repeating these steps as many times as necessary. Evolution
is an algorithm. Paraphrasing Charles Babbage, the Victorian-era com-
puter pioneer, God created not species but the algorithm for creating
species. The “endless forms most beautiful” Darwin spoke of in the
conclusion of The Origin of Species belie a most beautiful unity: all of
those forms are encoded in strings of DNA, and all of them come
about by modifying and combining those strings. Who would have
guessed, given only a description of this algorithm, that it could pro-
duce you and me? If evolution can learn us, it can conceivably also
learn everything that can be learned, provided we implement it on a
powerful enough computer. Indeed, evolving programs by simulating
natural selection is a popular endeavor in machine learning. Evolu-
tion, then, is another promising path to the Master Algorithm.
Evolution is the ultimate example of how much a simple learning
algorithm can achieve given enough data. Its input is the experience
and fate of all living creatures that ever existed. (Now that’s big data.)

The Master Algorithm, Pedro Domingos



