

A Large-scale Metagenomics Analysis Using OSG

Jiang Shu

Systems Biology and Biomedical Informatics Laboratory
Department of Computer Science & Engineering
University of Nebraska-Lincoln

OSG All Hands Meeting @ UCSD March 7th, 2017

Outline

- Background
 - Exosomes
 - RNA Sequencing Data Analysis
- Motivation
- Approach
 - Computational Challenges
 - Why OSG fits perfectly?
 - Files, scripts and submission
- Results
- OSG -- aftermath

Background

Exosomes

- Nanoparticles (40-100 nm) present in biological fluids such as blood.
- Play an important role in cell-to-cell communication.

Background

RNA sequencing data analysis

Motivation

- In a pervious project, we have isolated exosomes from one type of body fluid of one host species and assessed the molecules inside the exosomes.
- Moreover, we also found many unmapped reads are from microbial species.
- Thus, we designed a follow-up study to understand the origin of microbial sequences in the exosomes of this type of body fluid.
 - Metagenomics analysis

Approach

Two layers of analysis:

- Extract the reads cannot map to host genome
- Identify the microbial species through another level reads mapping based on host unmapped reads

Microbial genome database:

 4,742 microbial genomes were downloaded from <u>MBGD</u>.

Computational challenges

- A large number of target genomes
 - 4,742 genomes (size: 100KB ~ 58MB)
- Six samples contain over 100 million of host unmapped reads
 - Increasing the computing time
- In total, 6 x 4,742 = **28,452** mapping tasks

Question: Where to execute this many of jobs?

- Impossible for the lab-server (32 cores)
- Long pending time if submitted it to HCC clusters
 - Dynamic priority scheduling of users/groups
 - More jobs completed -> longer queue time

Perfect Fit of Open Science Grid (OSG)

- The tasks are independent to each other
- Limited file transfer
 - Total size of transferred files ~1GB
- Small memory consumptions
 - Memory < 2GB
- Short running time for each task
 - Maximum: 3 hours (HCC@UNL-Crane)
- Software is available on OSG
 - Pre-installed Bowtie and Tophat
 - No further configuration needed

OSG Preparation: Files

- Input files that transfer to the executing node on OSG
 - Fastq files of each sample
 - Target genome file: *.dnaseq

- Output files that transfer back from the executing node on OSG
 - Mapping results file: accepted_hits.bam (~30MB)
 - Mapping summary file: <u>align_summary.txt</u> (~0.1KB)
- Standard system files:
 - *.out, *.err, *.log (~10KB)

OSG Preparation: Scripts

```
exe.sh
#!/bin/bashsource
/cvmfs/oasis.opensciencegrid.org/osg/modules/lmod/5.6.2/init/bash
module load libgfortran/4.4.7
module load bowtie
                                  Load the pre-installed software
module load tophat
                                  $1 -> sample name,
                                  $2 -> target genome name
bowtie2-build "$2".dnasea "$2"
                                                          Software commands
tophat -o ./ "$2" "$1"_R1.fastq.gz "$1"_R2.fastq.gz
echo `hostname`
```

```
job.submit
universe = vanilla
executable = exe.sh
arguments = "E1 afd" $1 and $2 in exe.sh
error = E1_afd.err
log = E1_afd.log - System files, help on debugging.
output = E1 afd.out
should transfer files = YES
when to transfer output = ON EXIT
transfer input files = exe.sh, afd.dnaseq, E1 R1.fastq, E1 R2.fastq.gz
transfer_output_files = accepted_hits.bam, align_summary.txt
Requirements = (HAS MODULES =?= TRUE)
on exit hold = (ExitBySignal == True) | (ExitCode != 0)
periodic release = (NumJobStarts < 2) && ((CurrentTime - EnteredCurrentStatus) > 60)
queue
```

OSG Preparation: Submission

- All jobs were submitted from login nodes of HCC@UNL-Crane to Open Science Grid
 - \$ Condor_submit job.submit

Results

- Several microbial species were identified in the exosomes of this type of body fluid in the host species
- Although some microbial species have been reported in this host species before, this is the first time of identifying microbial sequences in the exosomes of this specific body fluid
- Based on the findings from this analysis, we have designed two experiments to further our understanding in this subject

OSG -- aftermath

- Total computation
 - ~84K CPU hours or 9.2 years
- Completed in
 - 408 hours or 17 days
- At average, ~2,500 jobs were running simultaneously
- 93% of jobs could be completed in 8 hours

OSG USER SCHOOL 2016
Harness the power of distributed computing

Acknowledgements

- Dr. Janos Zempleni's group at UNL for sample preparation
 - Di Wu and Dr. Bijaya Upadhyaya
- This work is support by National Institutes of Health (1P20GM104320)
- The discussions and encouragements from HCC staffs that greatly assisted the work
 - Dr. Emelie Harstad
- Dr. Derek Weitzel
- Dr. David Swanson
- Dr. Jingchao Zhang
- Natasha Pavlovikj
- And ...

SBBI and OSG

- In 2016, our team used 2 million CPU hours on OSG on following projects:
 - Metagenomics analysis
 - Bioinformatics analysis, Bowtie and Tophat
 - microRNA target prediction at genome scale
 - Machina Learning, Python
 - Gene regulatory network prediction in cancers
 - Statistical modeling, R
- We appreciate the continued support from HCC@UNL and OSG.

Jiang Shu jshu2@unl.edu

