#### 



# **RF Power**

David Peterson, James Steimel DOE Independent Project Review of PIP-II 15 November 2016

### Outline

- Background
- Construction phase scope of work
- R&D phase goals
- R&D status
- R&D schedule to complete
- R&D milestones and delivery goals
- R&D division of responsibility between Fermilab and DAE
- Summary



#### **RF Power - Managers**

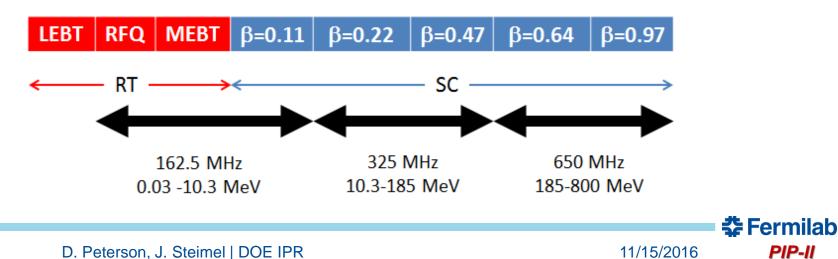
#### David Peterson, PIP-II RF Power, Level 3 Manager - Since Oct 2016

Electrical Engineer - MSEE 1983, University of Illinois, Urbana

- IBM Electron Beam Lithography
- Fermilab -
  - 1984 Tev I Project -> Antiproton Source
    - Microwave & RF Systems engineer for Stochastic Cooling, RF, beam instrumentation, interlocks, controls integration
    - Loma Linda Medical Accelerator instrumentation
    - Engineering Group Leader
    - PET Helium3 Linac RF and vacuum controls
    - SSR1, Coupler Test and HINS RF & Interlocks at MDB
  - 2011 AD/RF
    - Engineering Group Leader
    - PIP-II RFQ amplifier initial cost estimates
    - MuCool MTA test area cavity conditioning system
    - · Pbar Rings conversion to Muon Campus, Muon Campus RF and instrumentation support
    - PIP-II Injector Test RF systems integration and support

#### Jim Steimel, PIP-II Project Electrical Engineer

#### Fermilab Electrical Engineer - MSEE 1991, University of Michigan, Ann Arbor


- 1991 AD/Booster
  - RF Systems engineer for Booster RF systems.
    - Designer of high bandwidth, beam stability control systems for Booster, Main Ring, and Main Injector.
- 1996 AD/Luminosity Upgrades
  - Designer of beam stability control systems for the Tevatron.
  - Coordinate proof-of-principle experiment for slip stacking in Main Ring.
- 1998 AD/Tevatron
  - Instrumentation group leader.
  - Coordinated upgrade of Tevatron BPM processing system.
  - Continued design and maintenance of beam stability control for Tevatron.
  - Designed and implemented beam loading compensation control for Main Injector RF.
- 2009 AD-APC/HINS
  - Deputy department head for construction of a linear accelerator for testing the proof-of-principle of running a linear accelerator from a single RF source.
  - Commissioned 50mA proton ion source, 2.5 MW klystron, 500 kW 2.5 MeV RFQ, and 6-spoke cavity MEBT beam line.
- 2012 AD/SRF-Proton
  - Chief electrical engineer for PXIE beam line.
  - Managed construction and commissioning of RFQ and cavities for PXIE beam line.
- 2015 AD/PIP-II
  - Chief electrical engineer for PIP-II.
  - IIFC liaison for Level III manager of PIP-II RF Power (Dave Peterson).



#### **Construction Phase - Scope of Work**

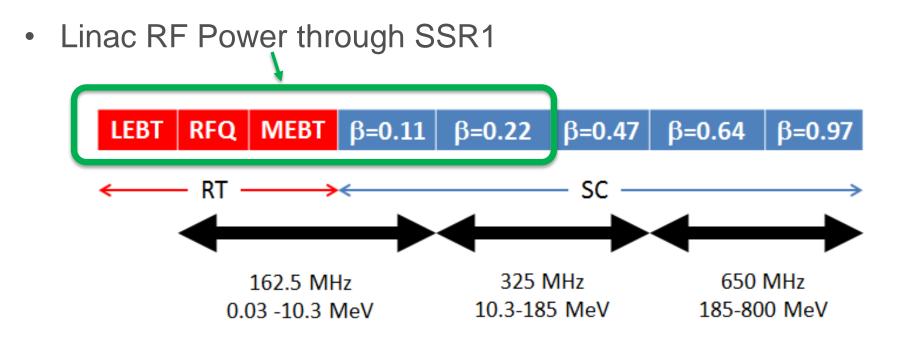
#### "RF Power" includes

- Amplifiers
- Circulators
- RF Distribution
  - Coax transmission lines and waveguide
  - Connectors, elbows, adapters, etc.
  - Directional Couplers
  - Loads
- Controls & Interlocks (where not otherwise provided)
  - Reflected power and RF leakage detection
  - Interface to Accelerator Control Network



#### **Construction Phase - Amplifiers**

| Section | Num of ampl | Freq (MHz) | Power (kW) | Duty     |
|---------|-------------|------------|------------|----------|
| RFQ     | 2           | 162.5      | 75         | CW       |
| Buncher | 3           | 162.5      | 3          | CW       |
| HWR     | 1           | 162.5      | 3          | CW       |
| HWR     | 7           | 162.5      | 7          | CW       |
| SSR1    | 16          | 325        | 7          | Pulse/CW |
| SSR2    | 35          | 325        | 20         | Pulse/CW |
| LB650   | 33          | 650        | 40         | Pulse/CW |
| HB650   | 24          | 650        | 70         | Pulse/CW |


- = Room Temperature Cavities
- = Superconducting Cavities

V. Lebedev, FNAL, The PIP-II Reference Design Report

**Fermilab** 



## **R&D Phase - Scope of Work**



- Additional Test Areas
  - 650 MHz RF Power for STC and Coupler Test Stand using Fermilab owned 30 kW IOT amplifiers
  - 650 MHz RF Power for HTS-2 and CMTS using RRCAT 40 kW Solid State Amplifiers

#### **R&D Phase Goals**

- FRONT END 162.5 MHZ RF POWER
  - Installation, Verification and Commissioning of 75 kW amplifiers for RFQ (Done)
  - PLC Interlocks
  - Installation & Verification of 3kW Amplifiers
  - Installation and Commissioning of 3kW Distribution
- SRF CAVITY 162.5 MHZ RF POWER
  - Procurement and Testing of 7kW Amplifiers
  - Procurement, Testing, and Commissioning of 7kW Amplifiers
- STC 650 MHZ POWER
- COUPLER TEST STAND 650 MHZ POWER



#### **R&D Phase Goals cont'd**

- 325 MHZ RF POWER AMPLIFIERS from BARC
  - 7 KW Power Amplifier
    - 325 MHz IIFC Liaison
    - Design of 325 MHz, 7 kW RF Power for SSR1 CM
    - First prototype constructed as per BARC design and jointly tested in India
    - Fabrication and testing of 8 Nos. of 7kW, 325 MHz RF System
  - Design and Installation of 325 MHz Distribution
- 650 MHZ RF POWER AMPLIFIERS from RRCAT
  - 40 KW Power Amplifier
    - 650 MHz IIFC Liaison
    - Design of 650 MHz, 40 kW RF Power for HTS-2 & CMTF
    - First prototype constructed & tested as per RRCAT design
    - Fabrication and testing of 2 Nos. of 40kW, 650 MHz RF System
    - Fabrication and testing of 6 Nos. of 40kW, 650 MHz RF System for CMTF

🛟 Fermilab

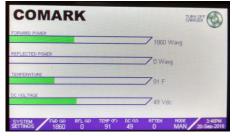
- Design and Installation of 650 MHz Distribution HTS-2
- Design and Installation of 650 MHz Distribution CMTS



# **R&D Status – RFQ Amplifiers**

- SigmaPhi 162.5 MHz, 75 kW amplifiers for RFQ are operational.
  - First RF out of amplifier #1 Sept 2014 & #2 Nov 2014
  - First power to RFQ February 15, 2016
  - Over 29.8 million pulses and 368 hours of CW operation
  - Some failures
    - RF "Slices" had some poor solder and water tubing joints
    - 480VAC input terminals insufficiently torqued
    - Some intermittent CAN Bus
      and Ethernet communications
  - Work continues on the module and slice test stand.

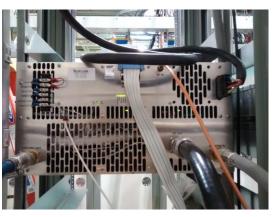



SigmaPhi 162.5 MHz 75 kW Amplifiers

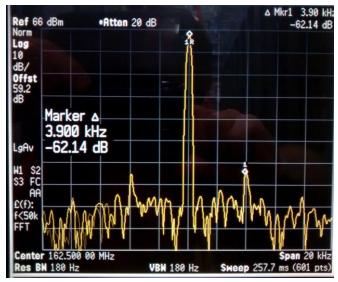



### **R&D Status - Amplifiers**

Comark/Technalogix 162.5 MHz, 3 kW amplifiers


- RF performance meets specifications
  - Gain, Gain and Phase vs Power, 1dB Compression, Spurious and Harmonics, Pulse performance
  - >100 hour continuous duty burn-in at 2 kW
- Two amplifiers at Fermilab
  - Original version powering Buncher 1 Cavity.
  - Newer Version 2 combines RF and Power Supply units
- Control interface issues still being addressed
  - Some spurious trips of Carrier enable
  - Non-functional Carrier status bit








Comark/Technalogix 3 kW amplifier



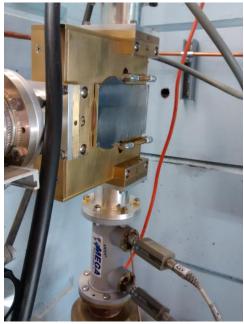
**Rear View** 



Spurious output: +/-3.9 kHz, -62.1 dBc.



### **R&D Status - Circulators**

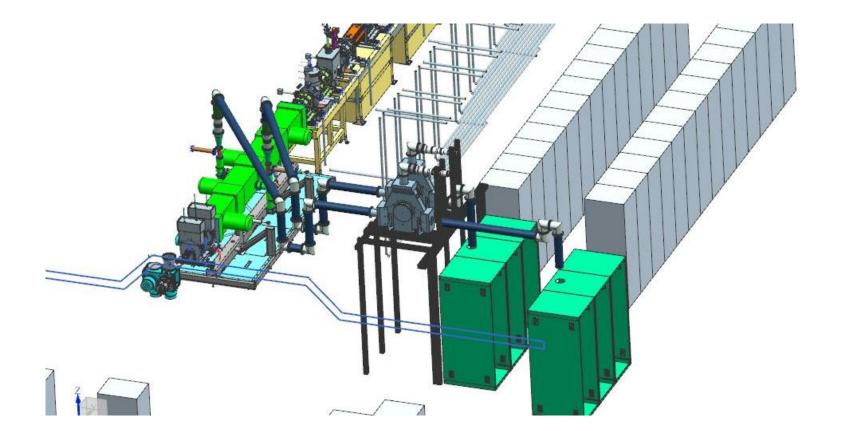

- Comark provided UTE Circulator
  - Sufficient for Buncher cavities
  - Does not provide sufficient isolation for HWR operation: ~ 6 dB with short circuit
- McManus 162.5 MHz, 7 KW Circulator
  - Passed 3 kW and 7 kW tests
    - 7 kW Insertion loss <0.33 dB
    - Isolation 23.1 dB @ 162.5 MHz, >20 dB across 6 MHz BW
    - Short Circuit return loss 13.7 dB
  - Is a possible alternative for the UTE circulators in the 3 kW systems



UTE 3 kW Circulator



UTE Circulator and Buncher 1 Cavity

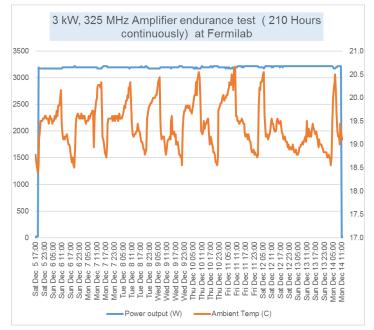



McManus 7 kW Circulator Test



#### **R&D Status – RF Distribution**

RF Distribution in place for RFQ and Buncher 1.






D. Peterson, J. Steimel | DOE IPR

### **R&D Status - 325 MHz RF Power Amplifiers**

 A 3 kW Solid State RF Amplifier (SSRA) system was developed based on the old FRS (of Dec. 2010) by DAE and was jointly tested successfully at Fermilab in late 2015.



Plot of 9 days of continuous CW operation



BARC 325 MHz, 3 kW Amplifier at Fermilab



#### **R&D Status - 325 MHz RF Power Amplifiers**

- 7kW prototype based on original specifications already tested at BARC.
- New specifications based on experience with 3kW prototype complete.
- 7kW RF Power Amplifier TRS completed and approved June 2, 2016, in Teamcenter ED0004290-Rev A.



325 MHz, 7 kW Solid State Amplifier at BARC



#### **R&D Status - 650 MHz RF Power Amplifiers**

- 30 kW prototype based on early specifications constructed and tested.
- Design modifications for 40 kW prototype underway; final specifications nearly complete.
- 40kW, 650 MHz Solid State RF Power Amplifier TRS completed and approved Aug. 2016 in Teamcenter ED0005489-Rev (-).



650 MHz, 30 kW Amplifier at RRCAT



#### **R&D IIFC Schedule to complete**

|                                                    |        |         |        |          |        |        |        |        |        |         |        |         |        |        |        | ·      |
|----------------------------------------------------|--------|---------|--------|----------|--------|--------|--------|--------|--------|---------|--------|---------|--------|--------|--------|--------|
|                                                    | Q1CY16 | Q2CY16  | Q3CY16 | Q4CY16   | Q1CY17 | Q2CY17 | Q3CY17 | Q4CY17 | Q1CY18 | Q2CY18  | Q3CY18 | Q4CY18  | Q1CY19 | Q2CY19 | Q3CY19 | Q4CY19 |
| 325 MHz RF Power                                   |        |         |        |          |        |        |        |        |        |         |        |         |        |        |        |        |
| Technical Requirement Specifications               |        | $\star$ |        |          |        |        |        |        |        |         |        |         |        |        |        |        |
| Design of SSRA                                     |        |         |        | <b>*</b> |        |        |        |        |        |         |        |         |        |        |        |        |
| Fabrication of 1st Prototype & Certification       |        |         |        |          |        |        | *      |        |        |         |        |         |        |        |        |        |
| Delivery of 9, 7 kWatt Unit to Fermilab            |        |         |        |          |        |        |        |        |        | $\star$ |        |         |        |        |        |        |
| RF Power system Ready for 1st SSR1 Cryomodule      |        |         |        |          |        |        |        |        |        |         |        | X       |        |        |        |        |
| 650 MHz RF Power                                   |        |         |        |          |        |        |        |        |        |         |        |         |        |        |        |        |
| Technical Requirement Specifications               |        |         |        |          |        |        |        |        |        |         |        |         |        |        |        |        |
| Design of SSRA                                     |        |         |        | *        |        |        |        |        |        |         |        |         |        |        |        |        |
| Fabrication of 2 units for HTS2 & Certification    |        |         |        |          |        |        |        |        |        |         | *      |         |        |        |        |        |
| RF Power system (SSRA, RFPI and LLRF) Ready for HT | \$2    |         |        |          |        |        |        |        |        |         |        | $\star$ |        |        |        |        |
| Delivery of 7, 40 kWatt Unit to Fermilab           |        |         |        |          |        |        |        |        |        |         |        |         |        |        |        |        |
| RF Power system (SSRA, RFPI and LLRF) Ready for HB | 650    |         |        |          |        |        |        |        |        |         |        |         |        |        |        | *      |
|                                                    |        |         |        |          |        |        |        |        |        |         |        |         |        |        |        |        |



#### **R&D RF Power Milestones and Delivery Goals**

| Major Milestone                                                         | Qty | Delivery date |
|-------------------------------------------------------------------------|-----|---------------|
| Complete commissioning of 162.5 MHz, 75 kW<br>RF Systems (RFQ)          | 2   | Q2-FY16       |
| Complete commissioning of 162.5 MHz, 3 kW<br>RF Systems (MEBT & HWR)    | 5   | Q2-FY17       |
| Delivery of 162.5 MHz, 7 kW RF Amplifiers<br>(HWR)                      | 8   | Q4-FY18       |
| Commissioning of 650 MHz, 30 kW RF system for STC                       | 1   | Q1-FY18       |
| Fabrication and testing of 650 MHz, 30 kW RF System for coupler testing | 1   | Q4-FY17       |



#### **R&D IIFC RF Power Milestones and Delivery Goals**

| Major Milestone                                                                         | Qty | Delivery date |  |  |  |
|-----------------------------------------------------------------------------------------|-----|---------------|--|--|--|
| Design of 325 MHz, 7 kW RF System                                                       | 1   | Q1-FY17       |  |  |  |
| Design of 650 MHz, 40 kW RF System                                                      | 1   | Q1-FY17       |  |  |  |
| Fabrication and testing of 40kW, 650 MHz RF<br>System for HTS-2, HB650, Horizontal Test | 2   | Q4-FY18       |  |  |  |
| Fabrication and testing of 7kW, 325 MHz RF<br>System for SSR1 CM at CMTF, Fermilab      | 8   | Q3-FY18       |  |  |  |
| Fabrication and testing of 40kW, 650 MHz RF System for CMTS, HB650 Cryomodule           | 6   | Q3-FY19       |  |  |  |



## **R&D Division of Responsibility - Fermilab and DAE**

- Fermilab provides 162.5 MHz RF amplifiers, circulators, and RF distribution.
- DAE provides 325 MHz 7 kW and 650 MHz 40 kW Solid State RF amplifiers.
- Fermilab provides 325 MHz and 650 MHz circulators and RF distribution.
- Fermilab provides 650 MHz IOT amplifiers for initial STC and Coupler Test Stand operations.

#### **Summary**

- Planning
  - RF Power construction phase will provide amplifiers, circulators, RF distribution, and front end controls & interlocks.
  - The R&D phase includes the RF Power requirements through SSR1 and the 650 MHz RF Power for STC, Coupler Test Stand, HTS-2 and CMTS.
- Status
  - RFQ RF is operational.
  - Buncher Cavity 1 RF is operational.
  - Work continues on interface corrections to 162.5 MHz, 3 kW amplifiers.
  - A 7 kW 162.5 MHz circulator meets all specifications.
  - BARC 325 MHz, 7 kW amplifier undergoing tests.
  - RRCAT 650 MHz, 40 kW amplifier design proceeding.
- Collaboration
  - The IIFC division of responsibility is
    - Fermilab will be providing all 162.5 MHz components.
    - Fermilab will be providing 650 MHz amplifiers, circulators and RF distribution for the STC and Coupler Test Stand.
    - BARC will be providing 325 MHz 7 kW amplifiers for the SSR1 cavities.
    - RRCAT will be providing 650 MHz 40 kW amplifiers for HTS-2 & CMTF.
    - Fermilab will be providing circulators and RF distribution for the DAE amplifiers.
- The R&D schedule shows completion of RF Power in Q4 of CY2019.



#### Backup

21





22