

Conventional Facilities

Steve Dixon DOE Independent Project Review of PIP-II 15 November 2016

Steve Dixon

- PIP-II Associate Project Manager for Civil Construction
- Relevant Experience
 - Licensed Architect;
 - Project Management Professional (PMP);
 - LEED Accredited Professional;
 - 24+ years at Fermilab;
 - NOvA Project L2 Manager for Site and Buildings;
 - General Plant Project Manager
 - Short Baseline Neutrino (SBN) Near Detector Building;
 - Short Baseline Neutrino (SBN) Far Detector Building;
 - CDF Refurbishment;
 - Experimental Operations Center;

Outline

- Construction Phase Scope of Work
- R&D Phase Goals
- R&D Status
- R&D Schedule to Complete
- IIFC Interface
- Summary

Construction Phase Scope of Work

- Conventional Facilities to Support PIP-II:
 - Site Work
 - Utilities (electrical, communication, ICW, DWS, sanitary, chilled water);
 - Site Improvements (roads, parking area, hardstands, tank foundations);
 - Linac
 - Below Grade Enclosure;
 - Linac Service Building;
 - Transport Line
 - Transport Line Enclosure;
 - Beam Absorber Enclosure;
 - Connection to existing Booster;
 - Cryo Plant Building
 - Mechanical Plant

R&D Phase Goals

- Conceptual Design:
 - Conceptual Design Report Text;
 - Conceptual Design Drawings;
- Life Safety Analysis
- Support Analysis of Alternates
- Support NEPA Process
- Prepare for CD-1
 - R&D Phase resource loaded schedule
 - Construction Phase resource loaded schedule
- Prepare for CD-2/3a
 - Advanced Preliminary Design for Site Prep work
 - Advanced Preliminary Design for Cryo Plant Building

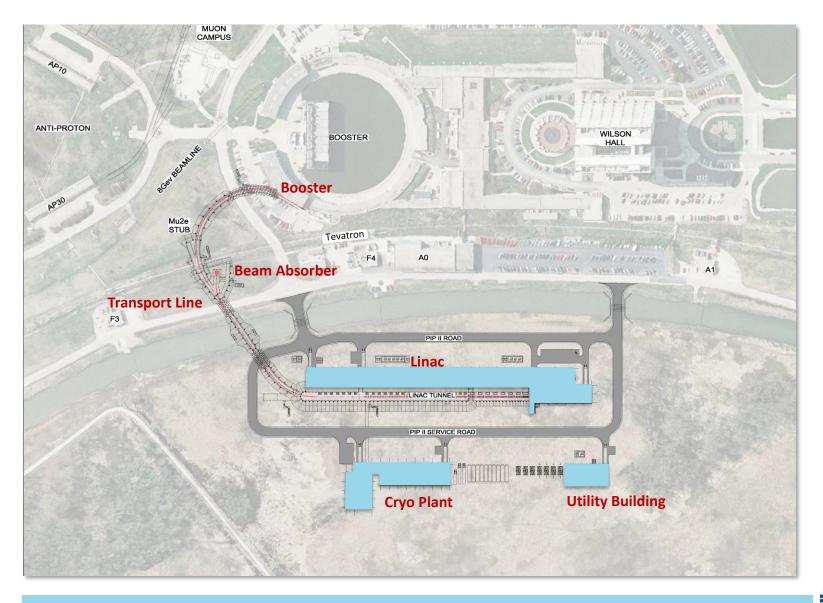
R&D Phase Goals and Status

- Conceptual Design:
 - Conceptual Design Report Text; Draft Complete
 - Conceptual Design Drawings; 95% Complete [1]
- Life Safety Analysis Draft Complete [2]
- Support Analysis of Alternates Complete
- Support NEPA Process Ongoing
- Prepare for CD-1 Ongoing
 - R&D Phase resource loaded schedule Complete
 - Construction Phase resource loaded schedule Ongoing
- Prepare for CD-2/3a Not started
 - Detailed Design for Site Prep work
 - Detailed Design for Cryo Plant Building
- [1] Conceptual Design Drawings can be found in TeamCenter ED0005473
- [2] Draft LSA can be found at PIP-II-doc-120

Charge Item: #1

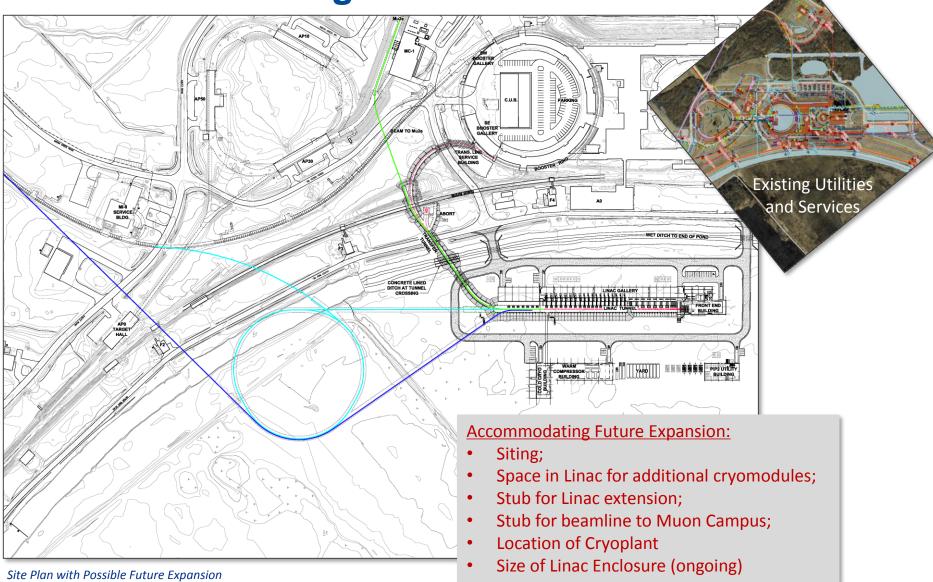
Charge Item: #1

Charge Item: #5


Charge Item: #2

Conceptual Design Process

- Meetings with Stakeholders:
 - Goal: Document the spatial and infrastructure requirements for PIP-II facilities;
 - Started in January 2016;
 - Product was the Conceptual Design drawings and text;
- Results:
 - Developed cooling strategies for pulsed mode and continuous wave operation;
 - Conventional facilities are similar to typical Fermilab construction;
 - Backup material has additional details


R&D Status – Overview

S. Dixon | DOE IPR

R&D Status – Siting Considerations

Fermilab

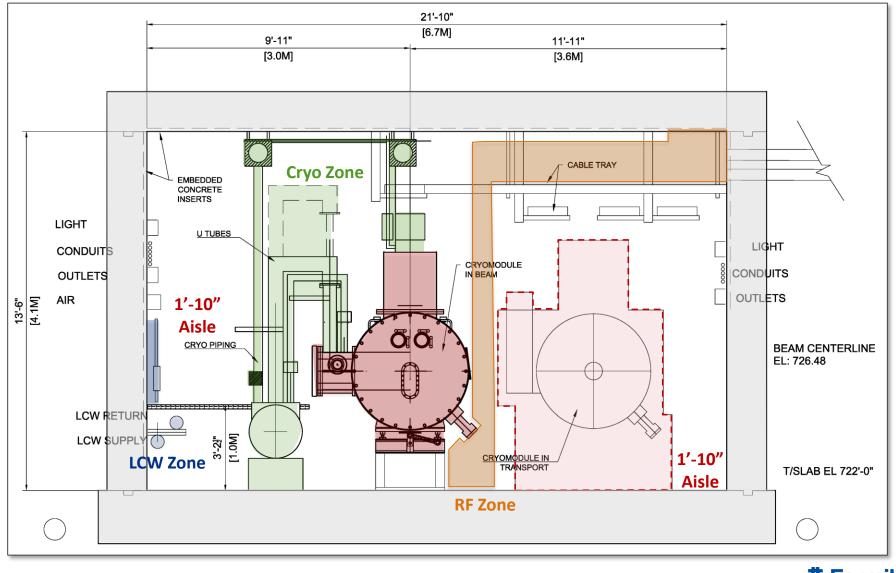
11/15/2016

S. Dixon | DOE IPR

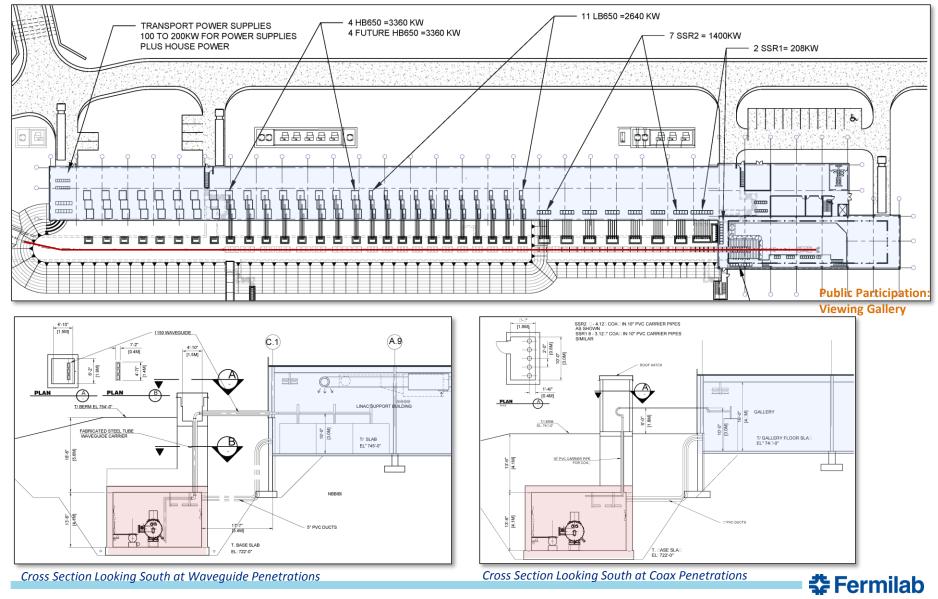
R&D Status

White Flags = Warm Components Blue Flags = Cold Components

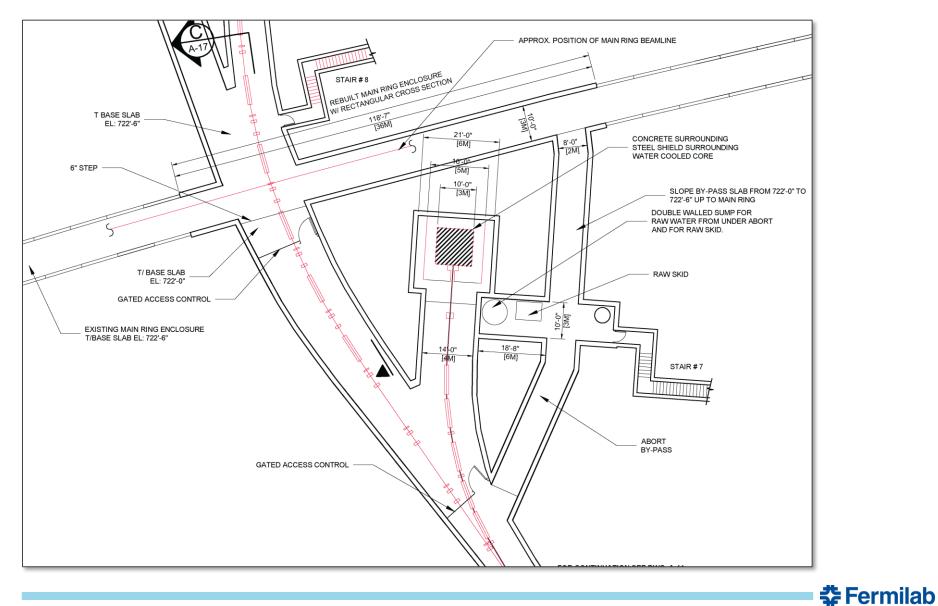
Looking South Along Beamline

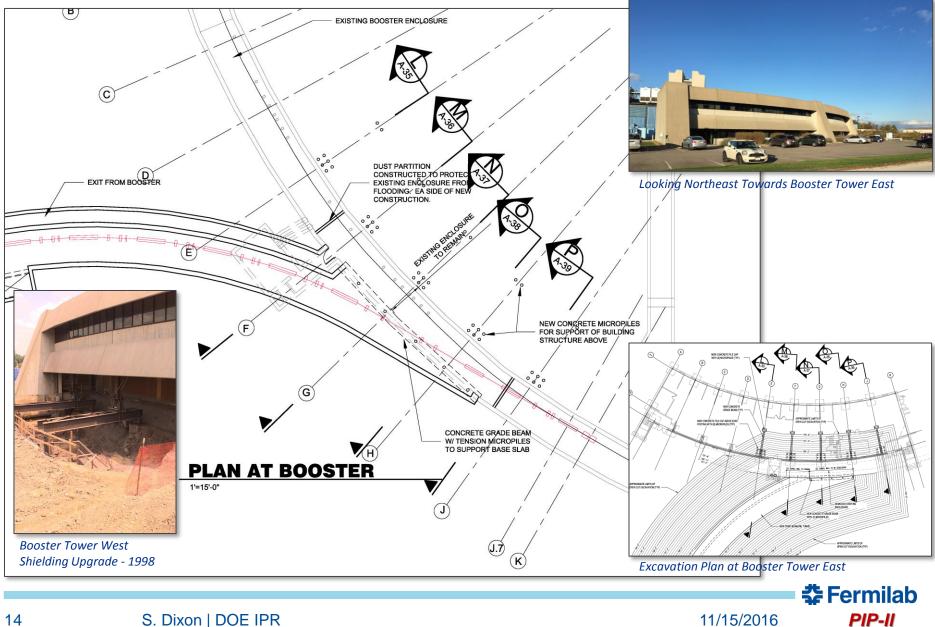

Looking Southeast From Wilson Hall

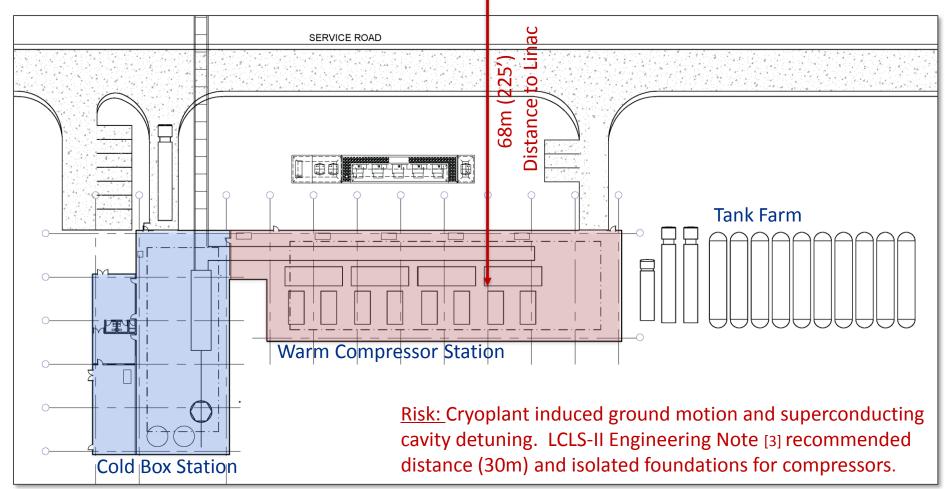
11/15/2016



R&D Status Typical Linac Cross Section

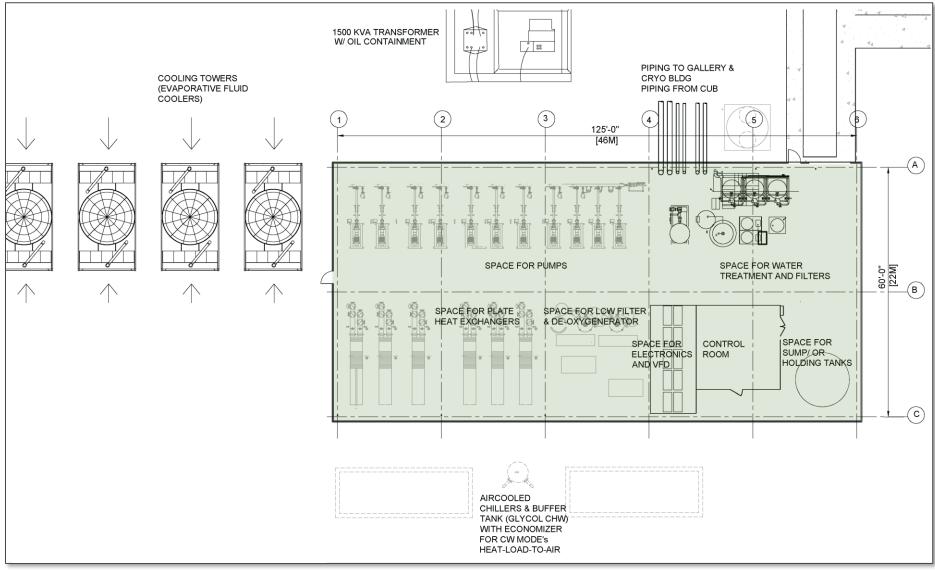

R&D Status – Linac Plan


PIP-II


R&D Status – Main Ring/Transport Line

R&D Status – Transport Line/Booster

R&D Status – Cryo Plant


[3] – Engineering Note LCLSII-4.8-EN-0326-R0 can be found at PIP-II-doc-122

11/15/2016

🛟 Fermilab

R&D Status – Utility Building

11/15/2016

Fermilab

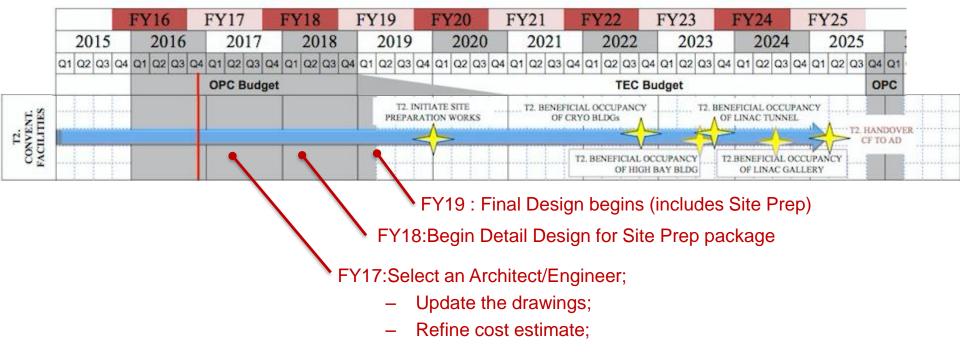
R&D Status – Support NEPA

V. Kuchler AP10 MC-1 BOOSTER WILSON AP50 C.U.B. PARKING HALL SE BOOSTER SCI CONT GALLERY TRANSFER GALLERY di fuñ n F4 A0 A1 WET DITCH TO END OF POND PIP II ROAD 0 6 00 44 44 0 191.P.P.P. LINAC GALLERY FRONT EN COSCORE STREET SILINAC TUNNEL STREET PROJECT BOUNDARY PIP II SERVICE ROAD INDICATES INDICATES WETLAND WARM WETLAND B666666 PIP2 UTILITY COMPRESSOR HAUL ROAD PROJECT **Construction Stockpiles** BOUNDARY INDICATES TILE FIELD AND WELLS

Site Plan with 2016 Wetland Delineation

Fermilab

Charge Item: #5


R&D Phase Schedule to Complete

Activit	y ID		Activity Name		2	016		2017		2018		2019		2020	2	021	2022		2023		2024	
					Q1 Q2	Q3 Q	24 Q1	1 Q2 Q3	3 Q4	Q1 Q2 Q3 Q4	4 Q1 (Q2 Q3 Q4	4 Q1 (Q2 Q3 Q4	Q1 Q2	2 Q3 Q4	Q1 Q2 Q3	Q4 Q1	Q2 Q3	Q4 Q1	Q2 Q3	Q4
[- 1	21.6.1 CF - R&D Phase								1	21.6.1	CF - R&D F	Phase									
	=	121.6.1.1 CF - R&D - Conceptual & Detail Design for all PIP-II civil engineering works (CDⅅ)								1	21.6.1.	1 CF - R&D) - Con	ceptual & De	etail Desi	ign for all P	IP-II civil engi	neering w	orks (CE	ⅅ)		
		121.6.1.1.1 CF - R&D - CDⅅ: T4 Milestones						T						Dⅅ: T4 Mil								
		A6000	CF - R&D - CDⅅ: T4 MS - Documentation & Drawings ready for CDR					🔶 CF - F	R&D - 0	CDⅅ: T4 MS -	Docum	entation & E	Drawin	igs ready fo	r CDR							
		A6010	CF - R&D - CDⅅ: T4 MS - Documentation & Drawings ready for CD-1 - End of Preliminary Design			11111		+ 0	F - R&	D - CDⅅ: T4 N	IS - Do	cumentatio	n & Dra	awings read	ly for CD	-1 - End of	Preliminary	Design				1111
		A1720230	CF - R&D - CDⅅ: T4 MS - Documentation & Drawings ready for TDR							🔶 CF - F	R&D - C	Dⅅ: T4 N	MS - Do	ocumentation	n & Draw	ings ready	for TDR					
		A6020	CF - R&D - CDⅅ: T4 MS - Documentation & Drawings ready for CD-2 - End of Detail Design							♦ 0	F - R&I	D - CDⅅ:	T4 MS	- Document	tation & E	Drawings r	eady for CD	2 - End o	f Detail D	esign		
	_	-																				

PIP-II PROJECT - High Level Master Schedule

🛟 Fermilab

Charge Item: #4

IIFC Interface

- Accommodate the cryo plant equipment
- Interface is with Cryogenics Department (Arkadiy)

Summary

- Technical Design is based in iterative discussions and meetings with stakeholders and the conceptual design of the conventional facilities can meet the specified technical performance requirements;
- The scope of the conceptual design for the conventional facilities is sufficiently well defined to support the preliminary cost and schedule estimates;
- The cost estimate will be refined in the coming month as part of the early tasking of the architect/engineer (A/E);
- To date, the conventional facilities portion has been accomplished by a combination of in-house staff supplemented with consultants. This effort will continue with an A/E firm in FY17;
- Conventional facilities has been involved with ES&H activities to date and will continue to be in the coming stages;
- The IIFC interface for the conventional facilities is primarily the cryo plant and this interface is well defined;

🚰 Fermilab

Backup Material

Stakeholders:

Fermilab:

Alessandro Vivoli, Anindya Chakravarty, Anthony F Leveling, Arkadiy L Klebaner Beau F. Harrison, Curtis M. Baffes, David E Johnson, David W Peterson Don Cossairt, Donald V Mitchell, Emil Huedem, Jim Niehoff, Fernanda G Garcia Jerry R Leibfritz, Jerzy Czajkowski, John E Anderson Jr, Luisella Lari Matthew Quinn, Maurice Ball, Paul Derwent, Ralph J Pasquinelli Todd M Sullivan, Valeri A Lebedev, William A Pellico

Consultants: Tom Lackowski, TGRWA Ron Jedziniak, LG Associates Rick Glenn, Jensen Hughes

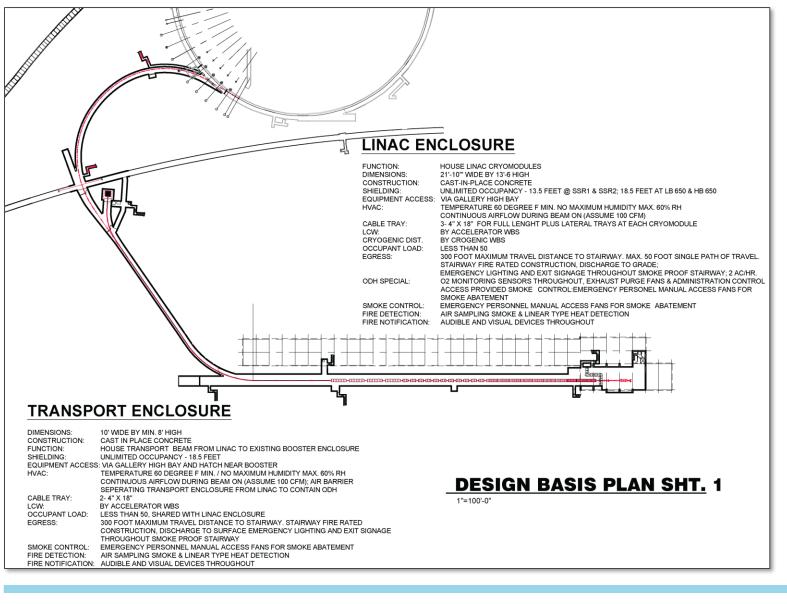
Meeting Minutes (PIP-II-doc-70)

- 01 Coordination Meeting 17FEB16 (pdf)
- <u>02 Cryogenic Department Meeting 19FEB16 (pdf)</u> Cryo Meeting
- <u>03 Coordination Meeting 02MAR16 (pdf)</u> Linac Enclosure
- <u>04 Coordination Meeting 09MAR16 R1 (pdf)</u> Linac Enclosure and Cooling
- 05 Coordination Meeting 24MAR16 R1 (pdf) Linac Enclosure and Cryo Plant
- 06 Cryo Coordination Meeting 01APR16 (pdf) ICW Cooling and Cryo
- <u>07 Coordination Meeting 14APR16 (pdf)</u> Penetrations and Cooling Strategy
- <u>08 Coordination Meeting 28APR16 (pdf)</u> Cooling Strategy
- <u>09 Coordination Meeting r1 12MAY16 (pdf)</u> Shielding and Transport Line
- <u>10 Coordination Meeting 09JUN16 (pdf)</u> Shielding Summary
- <u>11 Coordination Meeting 07JUL16 (pdf)</u> RF Distribution and LCW Cooling
- <u>12 Coordination Meeting 21JUL16 (pdf)</u> High Bay Equipment
- <u>13 Coordination Meeting 04AUG16 (pdf)</u> Cryo Summary and Linac Gallery
- <u>14 Coordination Meeting 15SEP16 (pdf)</u> Sitewide Electrical Distribution

11/15/2016

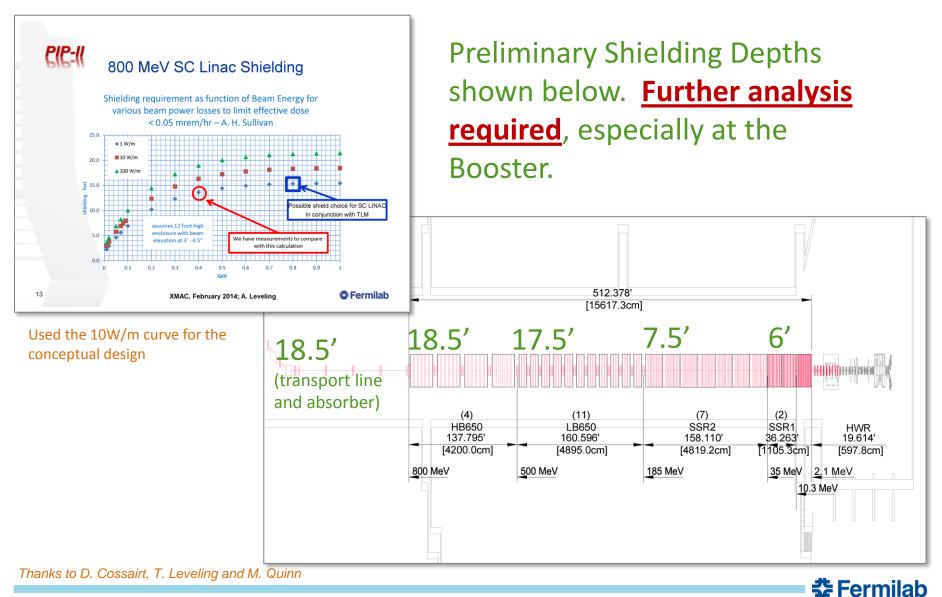
🛟 Fermilab

Drawings (TeamCenter ED0005473)

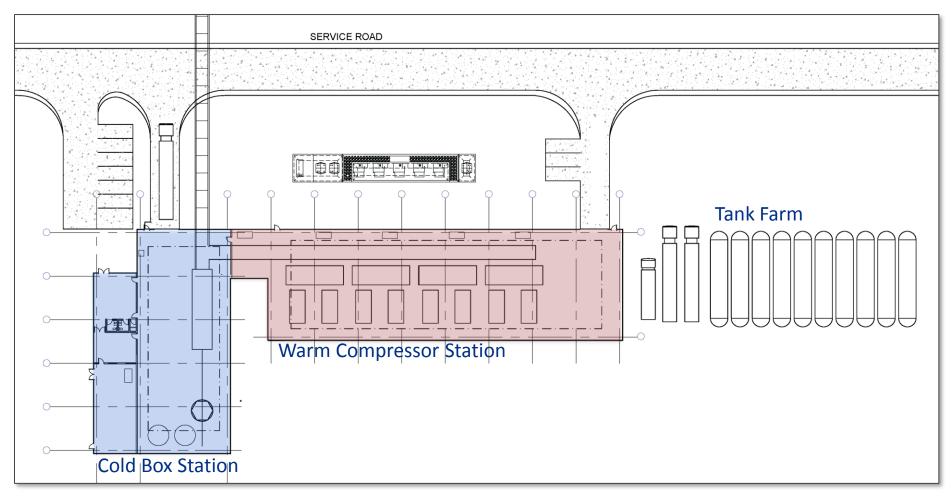

54 Drawings

- One (1) General sheet
- Six (6) Civil sheets
- Forty-Three (43) Architectural sheets
- Three (3) Mechanical sheets
- One (1) Electrical sheet

110	T OF DRAWINGS	A-9	LINAC ENCLOSURE PLAN - SHEET 4	A-29	CROSS SECTION THRU HIGH BAY
LIS	I OF DRAWINGS	A-10	TRANSPORT ENCLOSURE PLAN - SHEET 1	A-30	CROSS SECTION @ HWR
		A-11	TRANSPORT ENCLOSURE PLAN - SHEET 2	A-31	SECTION THRU HIGH BAY
G-1	TITLE SHEET, LIST OF DRAWINGS	A-12	TRANSPORT ENCLOSURE PLAN - SHEET 3	A-32	SECTION @ COAX FOR SSR1, SSR2
		A-13	TRANSPORT ENCLOSURE PLAN - SHEET 4	A-33	SECTION @ WAVEGUIDE FOR LB 650, HB 650
C-1	SITE IMAGE	A-14	TRANSPORT ENCLOSURE PLAN - SHEET 5	A-34	SECTION AT LINAC ALCOVES
C-2	FUTURE BEAMLINES SITE PLAN	A-15	TYP. LINAC ENCLOSURE SECTION	A-35	SECTION SHEET - 1
C-3	WETLANDS SITE PLAN	A-16	TYP. TRANSPORT ENCLOSURE SECTION	A-36	SECTION SHEET - 2
C-4	SITE PLAN	A-17	ELEVATION AT MAIN RING CROSSING	A-37	SECTION SHEET - 3
C-5	ENLARGED PLAN AT ABSORBER	A-18	PIP II CAMPUS PLAN	A-38	SECTION SHEET - 4
C-6	SITE UTILITY PLAN	A-19	LINAC SUPPORT BUILDING KEY PLAN	A-39	SECTION SHEET - 5
		A-20	LINAC SUPPORT BUILDING PLAN - SHEET 1	A-40	CRYOGENIC PLANT
A-1	DESIGN BASIS - SHEET 1	A-21	LINAC SUPPORT BUILDING PLAN - SHEET 2	A-41	COLD BOX STATION PLAN
A-2	DESIGN BASIS - SHEET 2	A-22	LINAC SUPPORT BUILDING PLAN - SHEET 3	A-42	COMPRESSOR STATION PLAN
A-3	DESIGN BASIS - SHEET 3	A-23	LINAC SUPPORT BUILDING PLAN - SHEET 4	A-43	PIP II UTILITY PLANT PLAN
A-4	LIFE SAFETY	A-24	LINAC SUPPORT BUILDING PLAN - SHEET 5		
A-5	ENCLOSURE KEY PLAN	A-25	SOUTHEAST BOOSTER BUILDING - DEMO PLAN	M-1	CONCEPTUAL DESIGN BASIS - SHEET 1
A-6	LINAC ENCLOSURE PLAN - SHEET 1	A-26	SOUTHEAST BOOSTER BLDG EXCAVATION PLAN	M-2	CONCEPTUAL DESIGN BASIS - SHEET 2
A-7	LINAC ENCLOSURE PLAN - SHEET 2	A-27	SOUTHEAST BOOSTER BUILDING - PLAN	M-3	COOLING HEAT REJECTION CONCEPT
A-8	LINAC ENCLOSURE PLAN - SHEET 3	A-28	SECTION THRU RECEIVING		
				E-1	POWER SINGLE LINE DIAGRAM


Typical Design Basis Sheet

辈 Fermilab



Preliminary Shielding Considerations



Cryo Plant

‡ Fermilab

Cryo Plant

Cryo Plant Cooling Requirements

- Water Requirements
 - 1,200 1,500 gpm flow
- Pond System
 - Chemical characteristics met by Pond system;
 - Solids content characteristics NOT met by Pond system;
 - No Pond ~\$500-\$700k per acre;
- ICW System
 - Chemical characteristics met by existing ICW system;
 - Solids content characteristics NOT met by ICW system;
 - Sampling ICW;


Cryo Plant – Water Quality Requirements

		PIP-II Req	uirements	Water Analy	sis Report	
Desription	Unit	Closed loop	Open loop	Range	Units	
pH value		7.5 - 9.0	7.5 - 9.0	7.82 - 7.89		1
Hardness	[dH]	< 20	< 20	20.79 - 23.02	ppm CaCO3	1 dH = 17.848 mg CaCO3
Carbonate hardness	[dH]	< 20	< 4	0.96 - 1.02	Ca/Mg ratio	
Chloride (Cl)	[mg/l]	< 100	< 100	5-15	ppm	
Dissolved iron (Fe)	[mg/l]	< 0.2	< 0.2	0.04 - 0.01	ppm	1 ppm = 1 milligram/liter
Sulphate (SO₄)	[mg/l]	< 200	< 200	84.51 - 115.51	ppm	
Sulfide (S2-)	[mg/l]	< 0.1	< 0.1			Future water analysis
Silicic acid (SiO ₂)	[mg/l]	< 200	< 200	10.63 - 11.56	ppm	
HCO3 / SO4	-	> 1	> 1			Future water analysis
Electrical conductivity	[µS/cm]	10 - 800	10 - 1500			Future water analysis
Ammonium (NH4)	[mg/l]	< 1	< 1			Future water analysis
Dissolved manganese (Mn)	[mg/l]	< 0.2	< 0.1	0.00	ppm	
Phosphate (PO4)	[mg/l]	< 15	< 15			Future water analysis
Glycol	[%]	20 - 40	-			Future water analysis
Solids (particle size)	[mm]	< 0.1	< 0.1	?	?	Requires Further Investigation
Solids (particle amount)	[mg/l]	< 10	< 10	?	?	Requires Further Investigation
Appearance		clear, colorless	clear, colorless			
Total bacterial count	[CFU/ml]	< 10 ⁴	< 10 ⁴	?	?	Requires Further Investigation
Proportion of non-dissolved solids	[ppm]	< 20	< 20	?	?	Requires Further Investigation
Algae		 not allowed 	- not allowed	?	?	Requires Further Investigation
Magnesium				189.46 - 204.43	ppm CaCO3	
Calcium				181.52 - 206.42	ppm CaCO3	
Copper				0.00 - 0.01	ppm	
Total Phosphorus				0.06 - 0.13	ppm	
Zinc				0.0 - 0.01	ppm	
Sodium				23.84 - 34.98	ppm	
Molybdate				0.01 - 0.3	ppm	
Boron				0.55 - 0.65	ppm	
Aluminum				0.02 - 0.03	ppm	

Thanks to A. Klebaner and A. Chakravarty

Cryo Plant – Water Quality Test Stand

• Installed as part of the Mu2e Cryo work for CDF;

- Installed test ports to sample the ICW before and after the strainer;
- Includes a Adams strainer with "standard" slot sizes (baseline);
- Two month rental of a Lakos strainer to reduce the solids;
- Replacement filter elements in Adams strainer with smaller slot size;
- Arranged for FESS/O water testing service to increase the testing to include solids;
- Scheduled testing on same duration as CUB;
- Compare strainer options with water quality requirements.

BZero Compressor Building

PM vs. CW Considerations

- Driven by duty factor of the equipment
 - 15% for Pulsed Mode
 - 100% for Continuous Wave Mode
- Common For Both Modes
 - Physical arrangement of heat producing equipment;
 - Electrical power supply (not usage);
 - Conventional Facilities handles the heat load to air (HLA);
- Difference is Primarily Cooling
 - 5.0 mw in pulsed mode;
 - 10.5 mw in continuous wave mode;

11/15/2016

🗲 Fermilab

PM vs. CW Considerations - Cooling

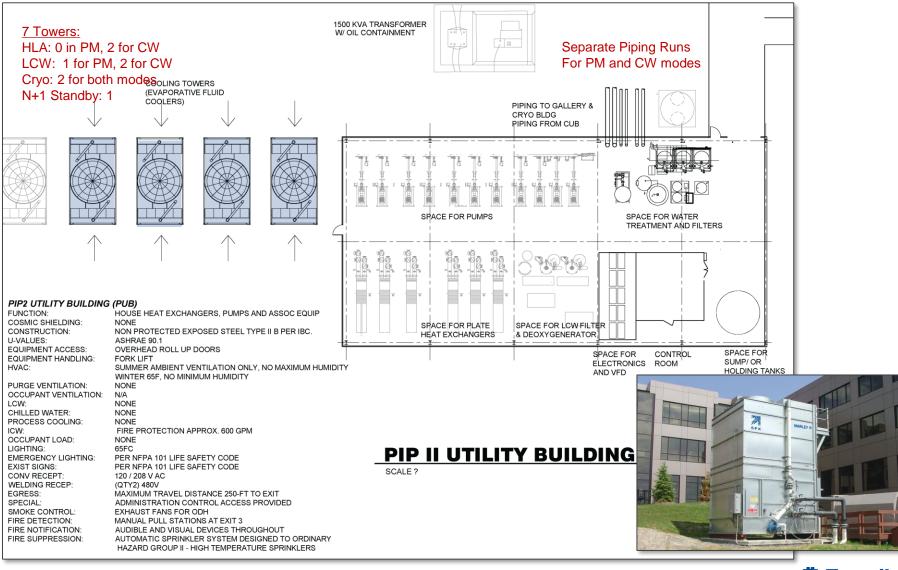
Heat Loads	Pulsed Mode (MW)	Continuous Wave Mode (MW)
Low Conductivity Water (LCW)	1.65	7.07
Cryoplant Cooling (Cryo)	3.4	3.4
Total (MW	/) 5.05	10.47

Basis for Estimate

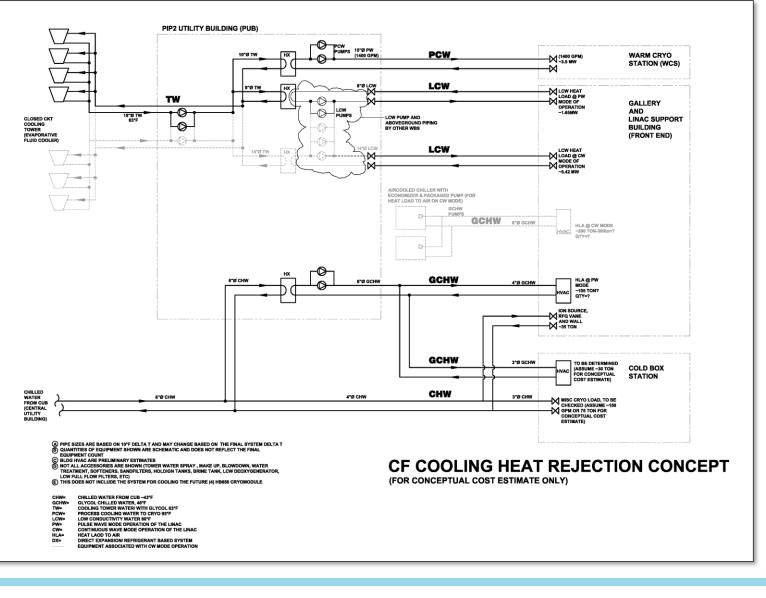
	Industrial Cooling Wa	ater (ICW)	Cooling Po	nds (PW)	Towe	rs (close)	Tow	ers (open)
Pulsed Mode	MW to GPM Conversion LCW 1,125 Cryo1,400	682.79 gpm gpm @17 Fdt gpm	MW to Acres Conversion LCW Cryo		LCW Cryo	1.0 towers 2.0 towers 3.00 towers ude standby	LCW Cryo	1.0 towers <u>1.0</u> towers 2.00 towers de standby
CW Mode	Cryo <u>1,400</u>	682.79 gpm gpm @17 Fdt gpm	MW to Acres Conversion LCW Cryo	800kw/acre 8.48 acres <u>4.08</u> acres 12.56 acres	LCW Cryo	4.0 towers 2.0 towers 6.00 towers ude standby	LCW Cryo exclue	2.0 towers <u>1.0</u> towers 3.00 towers de standby
	Other Considerations Strainers, Drought Conditions		Other Considerations Strainers, Heat Exchange Drought Conditions	ers, Treatment	Other Considerations Heat Exchangers, 7 Building Costs		Cther Considerations Heat Exchangers, T Building Costs	

Note: 1,400 gpm is the highest flow currently available from the existing ICW system

Thanks to E. Huedem

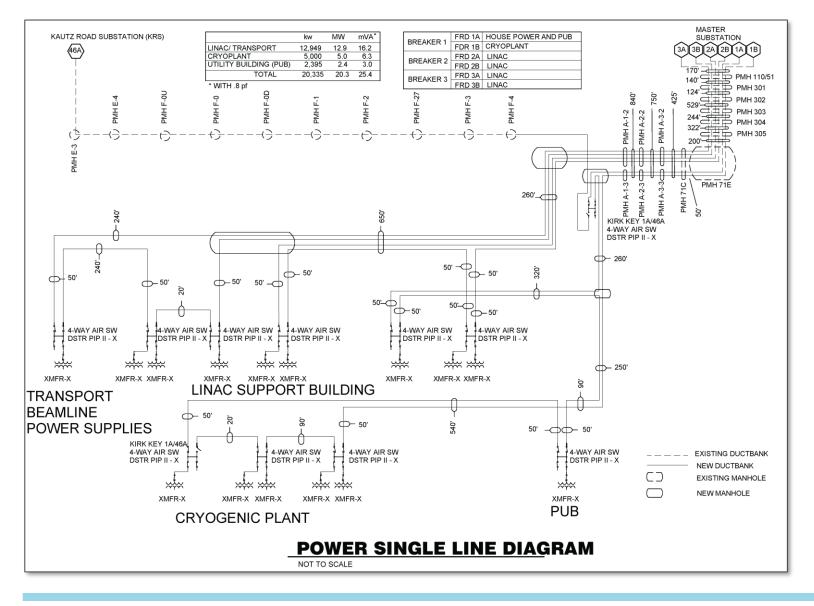

Cooling Design Approach

- Goal: Modular approach that allows for efficient operation in both modes;
- Pulsed Mode
 - Heat Load to Air (HLA): Utilize chilled water from existing CUB for equipment cooling (this utilizes the available headroom at CUB);
 - LCW: (1) Cooling tower
 - Cryo: (2) Cooling towers
- Continuous Wave Mode
 - Heat Load to Air (HLA): Install a chilled water loop to supplement the pulsed mode system with (2) cooling towers;
 - LCW: Add (1) Cooling tower
 - Cryo: No change


🚰 Fermilab

PIP-II Utility Building

Mechanical Conceptual Design


S. Dixon | DOE IPR

11/15/2016

Fermilab

36

MV Electrical Conceptual Design

Fermilab