#*7%, U.S. DEPARTMENT OF Office of

Fel‘m“ab g(%;? ENERGY Science

Kalman Filter on Parallel Architectures

Giuseppe Cerati
HEP.TrkX kickoff meeting
Nov. 2, 2016

Collaboration

 UCSD

* A. Yaqil, F. Wlrthwein

* M. Tadel, S. Krutelyov, post-doc replacing GC
* Cornell

 P. Wittich

* D. Riley, S. Lantz, K. McDermott
* Princeton

 P. Elmer
M. Lefebvre

T .
3¢ Fermilab
2 2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

mailto:cerati@fnal.gov

= Goals

UCsD

e Need large speedup factors, both for online and offline processing

Online event selection
— faster processing allows for more advanced reconstruction and selection
- higher efficiency with respect to offline selection
- increased purity allows decrease of thresholds for higher sensitivity

e Offline event reconstruction

— faster reconstruction means no cuts in physics phase space to fit into time budget:
more efficiency, better resolution, higher sensitivity

- more data processed: easier reprocessing, larger MC samples, no data parking

e Eventually the full event reconstruction will have to be ported, but it is natural to
start from the most time consuming algorithm, track reconstruction

e Algorithms cannot be ported in a straightforward way,
need to exploit architecture features or will end up in slower processing
- may need hardware-specific solutions for optimal performance

e But it’s likely there will be heterogeneous solutions, possibly site-dependent
- algorithm design has to be generic and applicable to different architectures

G. Cerati (UCSD) 2016/03/16 7

& Fermilab
3 2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

mailto:cerati@fnal.gov

—
—

i Why Xeon Phi?

We started with no real prejudice on a specific architecture
e Xeon Phi good starting point since it is not too far from traditional programming

e Main features (vector units, many cores) present in smaller scale also on Xeon
- direct porting of solutions/improvements across the two architectures

e But SIMD and non-SIMD processing levels are also used in GPU/CUDA
programming model
- algorithm design or choices can also be valid for GPUs

e Convenient choice given large investment for next-generation supercomputers
based on Xeon Phi

G. Cerati (UCSD) 2016/03/16 8

& Fermilab
4 2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

mailto:cerati@fnal.gov

Platforms

CHEP2015 Reference Platforms Preliminary Results

Xeon E5-2620 | Xeon Phi 7120P | Xeon Phi 7230
Sandy Bridge | Knights Corner | Knights Landing Tesla K40
(SNB)

Logical Cores EX2X2 61x4 64x4 2880 CUDA cores

Clock rate 2.5 GHz 1.24 GHz 1.3 GHz 875 MHz
GFLOPS 120 1208 2660 1430
256 bits 512 bits 2x512 bits 32 thread warp
Memory ~64-384 GB 16 GB 16 & 384 GB 12 GB
Bandwidth 42.6 GB/s 352 GB/s 475 & 90 GB/s 288 GB/s

"MS
D. Riley (Cornell) — CHEP2016 — 2016-10-12 > \S\\

Caches typically 32+32KB (L1) and 256 or 512 KB L2. N
3= Fermilab

5 2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

mailto:cerati@fnal.gov

Experimental Setup

Simple starting point:

* “Cylindrical Cow”:10 barrel layers, AR = 4cm,
In|<I, 3.8T magnetic field
Beam spot Imm in xy, lcm in z

Hit resolution 100pUm in r-phi, Imm in z "

Uncorrelated tracks, no scattering

Add realism after platform issues are
understood

Intel ICC compiler

? D. Riley (Cornell) — CHEP2016 — 2016-10-12 >

& Fermilab
6 2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

mailto:cerati@fnal.gov

7

—
—

=~ Kalman Filter reconstruction

UCsD

The Kalman Filter track reconstruction
searches for hits along the track direction,

with a search window that shrinks when
more measurements are added.

The track reconstruction process can be
divided in 3 steps: track seeding (initial
track prototype), building (hit finding) and
fitting (final parameter estimate).

The track fit is the bare repetition of the
basic unit, ideal as a starting point.

Track building is the most time
consuming part - it involves branching
points of variable size, with the simplest

version degenerating into the track fit case.

Track seeding not fully implemented yet,
for now seeds are defined using MC info.

G. Cerati (UCSD)

track building

0> | &>

Q=>0=>0

w0
(g°]
D
o

DO D>O=D> Q=D | D> @

2016/03/16

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

>0=> 0>

F9>0>0>0>>9

track fit

Y

Y

&V

& v

12

2% Fermilab

mailto:cerati@fnal.gov

8

=

Uen Challenges for parallelization/vectorization

e The current incarnation of the Kalman Filter track building cannot be successfully
parallelized and vectorized in a straightforward way

Each track lives in a different micro-environment
- non-homogeneous workload per track
— difficult for thread balancing

e Branching points (decisions) at each layer

- hardly predictable variable number of branches are created
— intrinsically non-SIMD

e Large use of memory to access geometry, magnetic field, alignment, conditions

e Track fitting not affected by the first two issues: simple starting point

G. Cerati (UCSD) 2016/03/16 13

& Fermilab
2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

mailto:cerati@fnal.gov

—
—

= i
Uesh Matriplex
Kalman filter calculations based on small matrices.
Intel Xeon and Xeon Phi have vector units with size 8 and 16 floats respectively.
How can we efficiently exploit them?

Matriplex is a “matrix-major” representation, where vector units elements
are separately filled by a different matrix: n matrices work in sync.

In other words, vector units are also used for SIMD parallelization
(in addition to parallelization from threads in different cores)

R1 _ M!(1,1) M'(1,2) M'(1,N) M'(2,1) M!(N,N) M (LT M™1(1,2)
R2 _ M2(1,1) M2(1,2) M2(1,N) M2(2,1) M2(N,N) MM2(|, 1) Mn*2(],2)
Rn _ M2(1,1) M2(1,2)
vector unit
Matrix size NxN, vector unit size n
G. Cerati (UCSD) 2016/03/16 |4

& Fermilab
2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

mailto:cerati@fnal.gov

=
UCSD

e Data locality is the key for reducing the Nhits problem

Space Partitioning for Track Building

partition the space without any detailed knowledge of the detector geometry structures

regular 2D grid in z-phi

» bin spacing based on measured track parameter errors
(about 3sigma, layer dependent)

within a single z bin, hits still sorted in phi
non overlapping bins, no assumption on self-containing
» hit information only duplicated

hit search done looping over bins in compatible z-phi
window
» precompute array of indices of hits in window

e Advantages:

no more problems with eta bin migrations
less redundancy of hit data (only one copy)
flexibility in definition of hit processing order
within the array of indices

» not bound to go from -phi to +phi, order of indices can be sorted
(not done for now)

» to avoid sorting and overwriting of output candidates

prerequisite for direct access to hits in original hit
collection

» no copy of hit data, but random access (hits not sorted in our code)
grid can be used for mapping material

G. Cerati (UCSD) XXX meeting - 2016/XX/XX

10 2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

®

O
O

3
2% Fermilab

mailto:cerati@fnal.gov

Vectorization: Track Fitting
Improved somewhat from CHEP2015

KNC Track Fit Vector Speedup

* Physics improvements reduced performance y cHAP1E E— deal
- Careful optimization restored scalar performance, 12
improved vectorization ~33% i? P
- SNB: 4x speedup with vector width 8, consistent with d j
KNC at vector width 8 2 -
o
Vector Width
Subtle errors can lead to poor vectorization KNG Track Fit Time vs Vector Width
- References to unaligned locations in aligned arrays 3;22 CHEPTS CHERSS
- Not using prefetching, scatter/gather, or intrinsics %Zg
» Conversions to double precision % o A
- Re-using variables that could be const with smaller t
scope T s e s W o u e
Vector Width
D. Riley (Cornell) — CHEP2016 — 2016-10-12 >
& Fermilab

11 2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

mailto:cerati@fnal.gov

Vectorization: Track Building

Much more challenging: ’
 Branches to select candidates impairs vectorization 3
» Adding multiple candidates at each layer leads to frequent g

&

data repacking
* More complicated data structures and poorer data locality

stress cache size and memory bandwidth 0

Results are better understood, but performance is no

better than CHEP2015

600

-+ ~2x speedup (SNB: also ~2x speedup) £ 500

* Improving this becomes more critical as number of vector ;A 400

registers increases 5§ 0o

S 200

. . . E

Combinatorial track builder much taster than 3 wz
CHEP2015

A D. Riley (Cornell) — CHEP2016 — 2016-10-12

12 2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

KNC Track Building Vector Speedup

(dashed) CHEP16
(dashed) CHEP15
| |dea!

Best Hit CHEP16 Combinatorial
Best Hit CHEP15 Combinatorial

0 2 4 6 8 10

Vector Width

12

14

KNC Track Building Time vs Vector Width

16

(dashed) CHEP16 Best Hit
(dashed) CHEP15 Best Hit

CHEP16 Combinatorial
CHEP15 Combinatorial

2 4 6

8 10
Vector Width

12

14

16

CMS

I

2% Fermilab

mailto:cerati@fnal.gov

Track Building Optimizations

Data locality is critical (w/speedups relative to CHEP2015):
- Optimize/vectorize copying of tracks into Matriplex (+20%)
* Minimize dynamic memory allocations (+45%)
- Avoid unnecessary object instantiations, copies (+25%)
 Minimize size of data structures, smarter low-level algorithms (+30%)

Parallelization switched from OpenMP to Threading Building Blocks (TBB)
- Static binning with OpenMP led to “tail effects” due to variable distribution of work
- TBB work-stealing provided an easy way to even out load variability

- Optimizing work partition size still critical—too large doesn’t allow enough balancing,
too small has high over head costs

10

Al

UCSD ? D. Riley (Cornell) — CHEP2016 — 2016-10-12

N

CMS

& Fermilab
13 2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

mailto:cerati@fnal.gov

11

55 ms

viune: OpenMP vs. TBB

OpenMP shows large tail effects === =

due to uneven distribution of work ==
from static partitioning o .

— wi:n_> L L L O
TBB work stealing, wth smaller = @ —e—,e =
units of work and dynamic == B
partitioning, reduces tail effects T ——
- T ———bL_ x | —————.
D. Riley (Cornell) — CHEP2016 — 2016-10-12 %

$& Fermilab
14 2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

mailto:cerati@fnal.gov

12

Parallelization: Track Fitting

KNC Track Fit Parallel Speedup

140

o CHEP16 CHEP15 dea
Scaling similar to CHEP2015 s =
» Parallelization near ideal up to 61 threads g . :
* Reach ~100x speedup at ~200 threads 20
* ldeally =122x to occupy available instruction slots o @ e Lo

« CHEP2016 faster due to better vectorization

KNC Track Fit Time vs Number of Threads

10

m CHEP16 CHEP15
SNB: ideal up to 12 threads, 14x at 24 threads .
- Some boost from hyper-threading filling idle slots =
5 0.1
E
0.01
0 30 60 90 120 150 180 210
Number of threads
D. Riley (Cornell) — CHEP2016 — 2016-10-12 >
£& Fermilab

15 2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

mailto:cerati@fnal.gov

13

Parallelization: Track Building

KNC Track Building Parallel Speedup

140

10|+ cHepte Combiatoril <+ GHepts Combinator
Scaling much better than CHEP2015 5" 5

* Within |15% of ideal up to 61 threads g

- ~85x speedup at ~200 threads N

* SNB: near ideal up to |12 threads, 14x at 24 threads 0 s e w0 120 10 180 210

Number of threads

Improvements in both single—thread track KNC Track Building Time vs. Number of Threads
building and parallel scaling : CHEP1E Comblnetoral & EHEP1S Gombinetora

* Single-thread performance ~10x better gs wo

- Parallel scaling ~10x better zé "

- Improved physics performance g

b

Number of threads

CMS

D. Riley (Cornell) — CHEP2016 — 2016-10-12

& Fermilab
16 2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

mailto:cerati@fnal.gov

Adding Realism

Began with a simplified setup as proof-of-concept as we
understood the issues with vectorization and
parallelization ot the KF

- Ultimately need to include realistic geometry, material effects,
inefficiencies, overlaps, etc.

+ Use CMS simulation, add complexity in incremental steps

Two step propagation to avoid using the tull geometry

» Simple parameterization of CMS geometry and material
 Step |:propagate to the average radius of the layer
+ Step 2: propagate to the exact hit radius

Endcap/Disks

* Propagate to z, similar handling of material and propagation

tAtI D. Riley (Cornell) — CHEP2016 — 2016-10-12

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

120

h_bbxi_axy

%107

100(=

80—

40p—- =

20—

sob== NN

B

—0.1
—0.08

0.06

0.04

0.02

120
100=

80=

60=
40

20—

—0.08

—0.06

—0.04

0.02

14

CMS

2% Fermilab

mailto:cerati@fnal.gov

Barrel layer representation !

Barrel layer representation uses only 3 parameters:
average radius R, radius spread AR, length Z

[
]
I
I
[
I

Two step propagation: : '
- to average radius, select hits within searéh wmdow (inflated to account for AR)
- for each hit, propagate to the exact hit rddms, work out Kalman Filter math on tangent plane

[
vfo 2& Fermilab
| |
18 Date Presenter | Presentation Title .' "
1]

15

CMS Simulation (preliminary)

CMS Data, KNC Track Building Vector Speedup

Farly tests with CMS simulation data oo S o T
+ Hits from full CMS simulation 3
- Parameterized geometry & material effects mm
’ 1
Vectorization is better 0
o 2 4 s 8 10 12 1 1

Vector Width

- Two-step propagation results in more time spent in

well-vectorized routines
CMS Data, KNC Track Building Parallel Speedup

140

Parallelization speedup is worse than toy setup R
- Events are smaller than toy events, increasing m 80
parallelization overhead & M”
- May need multiple events in flight ol
* Possibly other effects from more complex geometry T S e e
A\m- D. Riley (Cornell) — CHEP2016 — 2016-10-12 \mzm
$& Fermilab

19 2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

mailto:cerati@fnal.gov

17

GPU Progress

Implemented ﬁttlng routlnes on template<typename Tf, typename Ti, typename TfLL1,

TCSla I<4-O/I<20 i rder __81/8222?? Tf11, typename TfLLL>

device
* Best Hit track building in progress e line void
helixAtRFromIterative_impl(const Tf& __restrict__ inPar,
const Ti& _ _restrict__ inChg,
. . . TfLL1& __restrict__ outPar,
IHVCStlgatlﬂg COdC Sharlﬂg const Tf11l& __restrict__ msRad,
TfLLL& __restrict__ errorProp,
int nmin, int nmax)

* Define a GPlex class with same
interfaces as Matriplex Best Hit on GPU

- Template low-level routines, e.g. 014

propagation, KF i //
Preliminary tests with new Pascal /’_;./ e

P100 GPU i

* Better scaling behavior
. 1000 3000 5000 7000 9000 12000 16000 20000
* Slmp|el" memOI")’ management Tracks per event

Time for 10 events
(Sec)

A

D. Riley (Cornell) — CHEP2016 — 2016-10-12 >

-
N
")
O

& Fermilab
20 2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

mailto:cerati@fnal.gov

Q&A

Is the problem of tracking on parallel architectures solved?
* Only partially

* Very large parallelization speedup once event size sufficiently large (will need multi-event
processing for real life)

* Moderate vectorization speedup, room for improvement but not easy task

Is this project ready to reconstruct a full event end to end?

* Not yet, but the path is well defined

 Pattern recognition working on barrel or endcap only, transition region being addressed
» Seeding to be finalized

Will it work only for CMS or can be easily ported to Atlas/other experiments?

* because of memory limitations, detector description kept extremely simple, at the level of
parametrized detector

* it should be straightforward to define a different set to parameters to make it work for any
other barrel+endcap detector (but ultimate optimizations may require specific tunes)

How do we want to tackle the problem of the reference algorithm?

T .
3¢ Fermilab
21 2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

mailto:cerati@fnal.gov

