
Giuseppe Cerati
HEP.TrkX kickoff meeting
Nov. 2, 2016

Kalman Filter on Parallel Architectures

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

Collaboration

• UCSD
• A. Yagil, F. Würthwein
• M. Tadel, S. Krutelyov, post-doc replacing GC
• Cornell
• P. Wittich
• D. Riley, S. Lantz, K. McDermott
• Princeton
• P. Elmer
• M. Lefebvre

2

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures3

G. Cerati (UCSD) 2016/03/16

Goals

• Need large speedup factors, both for online and offline processing
• Online event selection

- faster processing allows for more advanced reconstruction and selection
- higher efficiency with respect to offline selection
- increased purity allows decrease of thresholds for higher sensitivity

• Offline event reconstruction
- faster reconstruction means no cuts in physics phase space to fit into time budget:  

more efficiency, better resolution, higher sensitivity
- more data processed: easier reprocessing, larger MC samples, no data parking

• Eventually the full event reconstruction will have to be ported, but it is natural to
start from the most time consuming algorithm, track reconstruction

• Algorithms cannot be ported in a straightforward way,  
need to exploit architecture features or will end up in slower processing
- may need hardware-specific solutions for optimal performance

• But it’s likely there will be heterogeneous solutions, possibly site-dependent
- algorithm design has to be generic and applicable to different architectures

7

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures4

G. Cerati (UCSD) 2016/03/16

Why Xeon Phi?

• We started with no real prejudice on a specific architecture

• Xeon Phi good starting point since it is not too far from traditional programming

• Main features (vector units, many cores) present in smaller scale also on Xeon
- direct porting of solutions/improvements across the two architectures

• But SIMD and non-SIMD processing levels are also used in GPU/CUDA
programming model
- algorithm design or choices can also be valid for GPUs

• Convenient choice given large investment for next-generation supercomputers
based on Xeon Phi

8

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures5

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — CHEP2016 — 2016-10-12

Platforms

3

CHEP2015 Reference Platforms Preliminary Results

Xeon E5-2620
Sandy Bridge

(SNB)

Xeon Phi 7120P
Knights Corner

(KNC)

Xeon Phi 7230
Knights Landing

(KNL)
Tesla K40

Logical Cores 6x2x2 61x4 64x4 2880 CUDA cores
Clock rate 2.5 GHz 1.24 GHz 1.3 GHz 875 MHz
GFLOPS 120 1208 2660 1430

SIMD width 256 bits 512 bits 2x512 bits 32 thread warp
Memory ~64-384 GB 16 GB 16 & 384 GB 12 GB

Bandwidth 42.6 GB/s 352 GB/s 475 & 90 GB/s 288 GB/s

Caches typically 32+32KB (L1) and 256 or 512 KB L2.

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures6

D. Riley (Cornell) — CHEP2016 — 2016-10-12

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

Experimental Setup

Simple starting point:
• “Cylindrical Cow”:10 barrel layers, R = 4cm,  

|η|<1, 3.8T magnetic field
• Beam spot 1mm in xy, 1cm in z
• Hit resolution 100μm in r-phi, 1mm in z
• Uncorrelated tracks, no scattering

Add realism after platform issues are
understood

Intel ICC compiler

4

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures7

G. Cerati (UCSD) 2016/03/16 12

Kalman Filter reconstruction

Figure 2. Left: Basic unit of the Kalman Filter algorithm. At each step, position information
from hits is used to estimate the track parameters and their uncertainties. The red circle
represents the measurement (a hit). The blue point on layer N represents the estimated state
(position and direction) at layer N before taking into account information from hits on that
layer. The yellow point is the updated state at layer N , taking into account all hits from up to
and including layer N . Right: Cartoon representing the two stages of fitting: forward fit and
backward smoothing. For this test we do not perform a smoothing step.

h_pt_pull_fit
Entries 47724
Mean -0.3016
RMS 1.338
Underflow 1026
Overflow 322
Prob 1.7e-08
Constant 10.5± 1731
Mean 0.0050± -0.2683
Sigma 0.004± 1.038

)fit
T

(pσ)/fit
T

 - pMC
T

(p
-10 -8 -6 -4 -2 0 2 4 6 8 10

Tr
ac

ks

0

200

400

600

800

1000

1200

1400

1600

1800

h_pt_pull_fit
Entries 47724
Mean -0.3016
RMS 1.338
Underflow 1026
Overflow 322
Prob 1.7e-08
Constant 10.5± 1731
Mean 0.0050± -0.2683
Sigma 0.004± 1.038

 Pull MC-Fit
T

p
h_x_pull_update

Entries 490249
Mean 0.0005957
RMS 1.233
Underflow 2763
Overflow 2820
Prob 0
Constant 6.614e+01± 3.559e+04
Mean 0.001587± 0.001464
Sigma 0.001± 1.069

)update(xσ)/update - xinit(x
-10 -8 -6 -4 -2 0 2 4 6 8 10

Hi
ts

0

5000

10000

15000

20000

25000

30000

35000

h_x_pull_update
Entries 490249
Mean 0.0005957
RMS 1.233
Underflow 2763
Overflow 2820
Prob 0
Constant 6.614e+01± 3.559e+04
Mean 0.001587± 0.001464
Sigma 0.001± 1.069

x Pull Init Hit-Update Hit

Figure 3. p

T

and position pull plots for the fit. The performance of the fit is under control.

As can be seen in Fig. 2 (right), the track fit consists of the simple repetition of the basic logic
unit for all the pre-determined track hits and therefore it is the easiest case to test. It is divided in
two steps: a forward fit and a backward smoothing stage for optimal performance. For this test,
only forward fit is run. The Kalman Filter requires initial estimation of track parameters to get
started. In our test, the starting state is taken directly from simulation with 100% uncertainty.
As a more realistic option, we also implemented a parabolic fit in the conformal space to define
initial parameters. For the fitting test, the hits are attached to a track “by name” (i.e., no
pattern recognition is performed) and a Kalman Filter fitting stage is performed. Figure 3
shows the p

T

and position pulls for the resulting fit with Gaussian distributions consistent with

seed

track fittrack building
The Kalman Filter track reconstruction

searches for hits along the track direction,
with a search window that shrinks when

more measurements are added.

The track reconstruction process can be
divided in 3 steps: track seeding (initial

track prototype), building (hit finding) and
fitting (final parameter estimate).

The track fit is the bare repetition of the
basic unit, ideal as a starting point.

Track building is the most time
consuming part - it involves branching
points of variable size, with the simplest

version degenerating into the track fit case.

Track seeding not fully implemented yet,
for now seeds are defined using MC info.

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures8

G. Cerati (UCSD) 2016/03/16

Challenges for parallelization/vectorization

• The current incarnation of the Kalman Filter track building cannot be successfully
parallelized and vectorized in a straightforward way

• Each track lives in a different micro-environment
- non-homogeneous workload per track
- difficult for thread balancing

• Branching points (decisions) at each layer
- hardly predictable variable number of branches are created
- intrinsically non-SIMD

• Large use of memory to access geometry, magnetic field, alignment, conditions

• Track fitting not affected by the first two issues: simple starting point

13

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures9

G. Cerati (UCSD) 2016/03/16 14

Matriplex

M1(1,1) M1(1,2) … M1(1,N) M1(2,1) … , … M1(N,N) Mn+1(1,1) Mn+1(1,2) … Mn+1(1,N) Mn+1(2,1) … , … Mn+1(N,N) M2n+1(1,1)

M2(1,1) M2(1,2) … M2(1,N) M2(2,1) … , … M2(N,N) Mn+2(1,1) Mn+2 (1,2) … Mn+2 (1,N) Mn+2 (2,1) … , … Mn+2(N,N) M2n+2(1,1)

…

…

…

…

…

…

…

…

…

…

…

Mn(1,1) Mn(1,2) … Mn(1,N) Mn(2,1) … Mn(N,N) M2n(1,1) M2n(1,2) … M2n(1,N) M2n(2,1) … M2n(N,N) M3n(1,1)

fa
st
%m

em
or
y%
di
re
c.
on

%

vector%unit%

R1%

R2%

…
%

Rn%

…

…

…

Figure 4. Memory layout for the new matrix library Matriplex. The layout is optimized for
our problem, which consists of matrix manipulations of low-dimensional matrices. The memory
layout is matrix-major. In the Figure, the matrix dimension is N ⇥N and the vector unit size
is n.

unit width and demonstrates that the fit results are reasonable. The achieved p

T

resolution is
roughly �

pT /pT = 0.005⇥ p

T

.

5. Optimized Matrix Library Matriplex
The computational problem of Kalman Filter-based tracking consists of a sequence of matrix
operations on matrices of sizes from N ⇥N = 3⇥ 3 up to N ⇥N = 6⇥ 6. To allow maximum
flexibility for exploring SIMD operations on small-dimensional matrices, and to decouple the
specific computations from the high level algorithm, we have developed a new matrix library,
Matriplex. The Matriplex memory layout is optimized for the loading of vector registers
for SIMD operations on a set of matrices as shown in Fig. 4. Matriplex includes a code
generator for generation of optimized matrix operations supporting symmetric matrices and
on-the-fly matrix transposition. Patterns of elements which are known by construction to be
zero or one can be specified, and the resulting generated code will be optimized accordingly to
reduce unnecessary register loads and arithmetic operations. The generated code can be either
standard C++ or simple intrinsic macros that can be easily mapped to architecture-specific
intrinsic functions.

6. Results
We present the results of this study in two stages: vectorization and parallelization. In the first
step we restructure the code to allow use of the vector units in Xeon1 and Xeon Phi2 processors.
In the second step we use OpenMP to parallelize the vectorized fitting procedure across the
cores on the large-core and small-core devices.

Figure 5 shows the timing for fitting 1M tracks as a function of the vector size, using a single
thread. Results are compared to scaling of serial processing time (“ideal scaling”), defined as
the time with vector unit size=1 divided by the vector unit size. Both for Xeon and Xeon Phi,
a significant vectorization speedup is achieved, with an e↵ective utilization of the vector units
of ⇠ 50% .

Figure 6 shows the timing for fitting the same set of tracks as a function of the number of
threads, in case all vector units are used. We test two approaches for distributing threads on
the cores: filling every core with one thread or adding a second thread on the same core before
moving to a di↵erent one. We compare to ideal parallelization performance (“ideal scaling”),
assuming no hyperthreading (i.e. a maximum of 12 threads on Xeon, maximum 120 threads
on Xeon Phi). Performance for one thread/core approach follows the ideal curve, with a small

1 CentOS 6.5, 2⇥ 6 core Xeon E5-2620 @ 2GHz, 64 GB RAM, turbo o↵, hyperthreading enabled
2 Xeon Phi 7150, 16 GB RAM, 61 cores @ 1.24GHz

Kalman filter calculations based on small matrices.  
Intel Xeon and Xeon Phi have vector units with size 8 and 16 floats respectively.  

How can we efficiently exploit them?

Matriplex is a “matrix-major” representation, where vector units elements  
are separately filled by a different matrix: n matrices work in sync.

In other words, vector units are also used for SIMD parallelization  
(in addition to parallelization from threads in different cores)

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

G. Cerati (UCSD) XXX meeting - 2016/XX/XX

• New version:
- regular 2D grid in z-phi

‣ bin spacing based on measured track parameter errors  
(about 3sigma, layer dependent)

- within a single z bin, hits still sorted in phi
- non overlapping bins, no assumption on self-containing

‣ hit information only duplicated

- hit search done looping over bins in compatible z-phi
window
‣ precompute array of indices of hits in window

• Advantages:
- no more problems with eta bin migrations
- less redundancy of hit data (only one copy)
- flexibility in definition of hit processing order  

within the array of indices
‣ not bound to go from -phi to +phi, order of indices can be sorted

(not done for now)
‣ to avoid sorting and overwriting of output candidates

- prerequisite for direct access to hits in original hit
collection
‣ no copy of hit data, but random access (hits not sorted in our code)

- grid can be used for mapping material

3

Hit access model

z

φ

10G. Cerati (UCSD) FNAL - 2016/01/13 18

Space Partitioning for Track Building
• Data locality is the key for reducing the Nhits problem

- partition the space without any detailed knowledge of the detector geometry structures
- eta partitions are self consistent (no bending)

‣ bins redundant in terms of hits, track candidates never search outside their eta bin
‣ simple boundary for thread definitions

- phi partitions give fast lookup of hits in compatibility window

bin

tracks

hits

bin0 bin1 bin2 bin3 bin4 bin5 binNbinN-1bin6

minEta maxEta

eta partitions:

phi partitions:

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures11

D. Riley (Cornell) — CHEP2016 — 2016-10-12

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

Vectorization: Track Fitting
Improved somewhat from CHEP2015

• Physics improvements reduced performance
• Careful optimization restored scalar performance,

improved vectorization ~33%
• SNB: 4x speedup with vector width 8, consistent with

KNC at vector width 8

Subtle errors can lead to poor vectorization
• References to unaligned locations in aligned arrays
• Not using prefetching, scatter/gather, or intrinsics
• Conversions to double precision
• Re-using variables that could be const with smaller

scope

KNC Track Fit Vector Speedup

Sp
ee

du
p

0

2

4

6

8

10

12

14

16

Vector Width
0 2 4 6 8 10 12 14 16

CHEP16 CHEP15 Ideal

KNC Track Fit Time vs Vector Width

Ti
m

e
fo

r 1
M

 tr
ac

ks
 (S

ec
)

0

5

10

15

20

25

30

35

40

Vector Width
0 2 4 6 8 10 12 14 16

CHEP16 CHEP15

8

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures12

D. Riley (Cornell) — CHEP2016 — 2016-10-12

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

Vectorization: Track Building
Much more challenging:

• Branches to select candidates impairs vectorization
• Adding multiple candidates at each layer leads to frequent

data repacking
• More complicated data structures and poorer data locality

stress cache size and memory bandwidth

Results are better understood, but performance is no
better than CHEP2015

• ~2x speedup (SNB: also ~2x speedup)
• Improving this becomes more critical as number of vector

registers increases

Combinatorial track builder much faster than
CHEP2015

KNC Track Building Time vs Vector Width

Ti
m

e
fo

r 1
0x

20
k

Tr
ac

ks

(S
ec

)

0

100

200

300

400

500

600

Vector Width
0 2 4 6 8 10 12 14 16

(dashed) CHEP16 Best Hit CHEP16 Combinatorial
(dashed) CHEP15 Best Hit CHEP15 Combinatorial

KNC Track Building Vector Speedup

Sp
ee

du
p

0

1

2

3

4

Vector Width
0 2 4 6 8 10 12 14 16

(dashed) CHEP16 Best Hit CHEP16 Combinatorial
(dashed) CHEP15 Best Hit CHEP15 Combinatorial
Ideal

9

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures13

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — CHEP2016 — 2016-10-12

Track Building Optimizations

Data locality is critical (w/speedups relative to CHEP2015):
• Optimize/vectorize copying of tracks into Matriplex (+20%)
• Minimize dynamic memory allocations (+45%)
• Avoid unnecessary object instantiations, copies (+25%)
• Minimize size of data structures, smarter low-level algorithms (+30%)

Parallelization switched from OpenMP to Threading Building Blocks (TBB)
• Static binning with OpenMP led to “tail effects” due to variable distribution of work
• TBB work-stealing provided an easy way to even out load variability
• Optimizing work partition size still critical—too large doesn’t allow enough balancing,

too small has high over head costs

10

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures14

D. Riley (Cornell) — CHEP2016 — 2016-10-12

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

vTune: OpenMP vs. TBB

OpenMP shows large tail effects
due to uneven distribution of work
from static partitioning

TBB work stealing, wth smaller
units of work and dynamic
partitioning, reduces tail effects

11

55 ms

17 ms10 ms

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures15

D. Riley (Cornell) — CHEP2016 — 2016-10-12

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

Parallelization: Track Fitting

Scaling similar to CHEP2015
• Parallelization near ideal up to 61 threads
• Reach ~100x speedup at ~200 threads
• Ideally ≥122x to occupy available instruction slots
• CHEP2016 faster due to better vectorization

SNB: ideal up to 12 threads, 14x at 24 threads
• Some boost from hyper-threading filling idle slots

KNC Track Fit Parallel Speedup

Sp
ee

du
p

0

20

40

60

80

100

120

140

Number of threads
0 30 60 90 120 150 180 210

CHEP16 CHEP15 Ideal

KNC Track Fit Time vs Number of Threads

Ti
m

e
fo

r 1
M

 T
ra

ck
s

(S
ec

)

0.01

0.1

1

10

Number of threads
0 30 60 90 120 150 180 210

CHEP16 CHEP15

12

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures16

D. Riley (Cornell) — CHEP2016 — 2016-10-12

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

Parallelization: Track Building

Scaling much better than CHEP2015
• Within 15% of ideal up to 61 threads
• ~85x speedup at ~200 threads
• SNB: near ideal up to 12 threads, 14x at 24 threads

Improvements in both single-thread track
building and parallel scaling

• Single-thread performance ~10x better
• Parallel scaling ~10x better
• Improved physics performance

KNC Track Building Time vs. Number of Threads

Ti
m

e
fo

r 1
0x

20
k

Tr
ac

ks

(S
ec

)

0.1

1

10

100

Number of threads
0 30 60 90 120 150 180 210

CHEP16 Combinatorial CHEP15 Combinatorial

KNC Track Building Parallel Speedup

Sp
ee

du
p

0

20

40

60

80

100

120

140

Number of threads
0 30 60 90 120 150 180 210

CHEP16 Combinatorial CHEP15 Combinatorial
Ideal

13

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures17

D. Riley (Cornell) — CHEP2016 — 2016-10-12

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

Adding Realism
Began with a simplified setup as proof-of-concept as we
understood the issues with vectorization and
parallelization of the KF

• Ultimately need to include realistic geometry, material effects,
inefficiencies, overlaps, etc.

• Use CMS simulation, add complexity in incremental steps

Two step propagation to avoid using the full geometry
• Simple parameterization of CMS geometry and material
• Step 1: propagate to the average radius of the layer
• Step 2: propagate to the exact hit radius

Endcap/Disks
• Propagate to z, similar handling of material and propagation

14

mailto:cerati@fnal.gov

Date Presenter I Presentation Title 18

Barrel layer representation

R

ΔR

Barrel layer representation uses only 3 parameters:
average radius R, radius spread ΔR, length Z
=> avoid filling memory with complex geometry structures (position, rotation of each module)
=> almost detector independent

Two step propagation:
- to average radius, select hits within search window (inflated to account for ΔR)
- for each hit, propagate to the exact hit radius, work out Kalman Filter math on tangent plane

2016/11/02
cerati@

fnal.gov - Kalm
an Filter on Parallel Architectures

19

D
. R

iley (C
ornell) —

 C
H

EP2016 —
 2016-10-12

G.Cerati (UCSD)

K
alm

an Filter Tracking
on P

arallel A
rchitectures

C
H

EP 2
0
1
5
 - A

p
r. 1

3
, 2

0
1
5

G
.C

erati, M
.T

ad
el, F.W

ü
rth

w
ein

, A
.Y

ag
il (U

C
SD

)
S.Lan

tz, K
.M

cD
erm

o
tt, D

.R
iley, P.W

ittich
 (C

o
rn

ell)
P.Elm

er (Prin
ceto

n
)

G. Cerati (UCSD)
CHEP2015 - 2015/04/13

Test Setup

•
Xeon Phi as starting point, no real prejudice on architecture
-

but m
ore direct porting of optim

izations to Xeon
�

in fact we test perform
ance on both

-
the nam

e of the gam
e is to keep the m

any processors occupied and the vector units
on sync, perform

ing the sam
e calculations and thus m

inim
izing branching points

•
Standalone tracking code
-

started with a sim
plified setup

�
Ideal barrel geom

etry, no m
aterial interaction, gaussian hit position sm

earing
�

Particle gun sim
ulation, no interactions/decays

-
prepared to increase com

plexity along the way

3

C
M

S Sim
ulation (prelim

inary)
E

arly tests w
ith C

M
S sim

ulation data
•

H
its from

 full C
M

S sim
ulation

•
Param

eterized geom
etry &

 m
aterial effects

V
ectorization is better
•

Tw
o-step propagation results in m

ore tim
e spent in

w
ell-vectorized routines

Parallelization speedup is w
orse than toy setup

•
Events are sm

aller than toy events, increasing
parallelization overhead

•
M

ay need m
ultiple events in flight

•
Possibly other effects from

 m
ore com

plex geom
etry

15

C
M

S D
ata, K

N
C

 Track B
uilding Vector Speedup

Speedup

0 1 2 3 4

Vector W
idth

0
2

4
6

8
10

12
14

16

B
est H

it
C

om
binatorial

Ideal

C
M

S D
ata, K

N
C

 Track B
uilding Parallel Speedup

Speedup

0 20 40 60 80

100

120

140

N
um

ber of threads
0

30
60

90
120

150
180

210

B
est H

It
C

om
binatorial

Ideal

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures20

D. Riley (Cornell) — CHEP2016 — 2016-10-12

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

GPU Progress
Implemented fitting routines on
Tesla K40/K20

• Best Hit track building in progress

Investigating code sharing
• Define a GPlex class with same

interfaces as Matriplex
• Template low-level routines, e.g.

propagation, KF

Preliminary tests with new Pascal
P100 GPU

• Better scaling behavior
• Simpler memory management

17

template<typename Tf, typename Ti, typename TfLL1,
 typename Tf11, typename TfLLL>
#ifdef __CUDACC__
__device__
#endif
static inline void
helixAtRFromIterative_impl(const Tf& __restrict__ inPar,
 const Ti& __restrict__ inChg,
 TfLL1& __restrict__ outPar,
 const Tf11& __restrict__ msRad,
 TfLLL& __restrict__ errorProp,
 int nmin, int nmax)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1000 3000 5000 7000 9000 12000 16000 20000

Ti
m
e	
fo
r	1

0	
ev
en
ts

(S
ec
)

Tracks	per	event

Best	Hit	on	GPU

K20

P100

mailto:cerati@fnal.gov

2016/11/02 cerati@fnal.gov - Kalman Filter on Parallel Architectures

Q&A

• Is the problem of tracking on parallel architectures solved?
• Only partially
• Very large parallelization speedup once event size sufficiently large (will need multi-event

processing for real life)
• Moderate vectorization speedup, room for improvement but not easy task

• Is this project ready to reconstruct a full event end to end?
• Not yet, but the path is well defined
• Pattern recognition working on barrel or endcap only, transition region being addressed
• Seeding to be finalized

• Will it work only for CMS or can be easily ported to Atlas/other experiments?
• because of memory limitations, detector description kept extremely simple, at the level of

parametrized detector
• it should be straightforward to define a different set to parameters to make it work for any

other barrel+endcap detector (but ultimate optimizations may require specific tunes)

• How do we want to tackle the problem of the reference algorithm?

21

mailto:cerati@fnal.gov

