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Deep Learning Approach to
Charged Particle Track Pattern
Recognition




Approach #

Learn the parameters of the track
each hit belong to

*Very similar to an Hough Transform
approach : just learning the
transformation instead of imposing it
» Similar to associative memory track
parameters lookup
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Hough algorithm

p value [arbitrary units)

Discretised maximum likelihood optimisation over

Lnl{x}) = 3 [ dn 6(d(n,x))

where d is the distance measure of track to hit. A
Typically carried out as

= grid search
- Fast Hough bisecting each dimension

over small volumes dn of the parameter space evaluating
only the signs of o on the edges.

Refinements oo iy )
= Weighting of hits versus tracks e.g. on distance d or - = = i :E,g.
prior distributions e e .

= Priorisation of search areas
- Qwerlapping volumes
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Connecting The Dots 2016 https://indico.hephy.oeaw.ac.at/event/86/
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https://indico.hephy.oeaw.ac.at/event/86/

In a Nutshell #

Input Target

ANN

pixel signal | » lrack parameter of track

through that pixel

 Datais representedina 1D
vector indexing pixels over
the barrels in the natural
ordering.

« Size N = sum(layer size)

* Binary signal On/Off

* The output has the same
size as the input
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What Was Tried

» Stack of 4 pixel modules, small number of tracks (4 to 10 due to
small setup) small number of pixel (fully connected network size
limitation) gave 60-70% hit matching accuracy.

-
L. 2

* Train on the track “rank” in the event. Much harder problem than
finding track parameters.

* Regression on normalized curvature of the track. More reasonable
approach.

* Helix data generator in a simple barrel pixel only detector. Does not
require to store a huge amount of data, it's generated on-demand.

 Fully connected layers so far. Nothing else because of the un-
conventional layer layout.

 Training with masking pixel with no signal to avoid “training on zeros”
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Path Forward -_"_-"’h
» Step back and demonstrate in lower dimensionality

» Add other track parameters (eta, phi, rho) to target

» Address the size of the model with model
parallelisation (tensorflow)

» Address training time with data parallelisation
(mpi_learn, spark, see next slides)

 Clustering in the track parameter space. Combined
approach “a la” scene labeling (see next slides)
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Scene Labeling

11/01/16

Farabet et al. ICML 2012, PAMI 2013
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Scene Labeling
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From talk of LeCunn at CERN
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<‘@, Distributed Learning e
1) Compute gradient,
send to Master — —_2) Update network Training Time
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3) Send new weights to Worker

* Deep learning with elastic averaging SGD
https://arxiv.org/abs/1412.6651

* Revisiting Distributed Synchronous SGD
https://arxiv.org/abs/1604.00981

* Implementation with Spark and MPI for the
Keras framework https://keras.io/
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