Deep Learning + HEP

Warning: half-baked slides

Today's talk

Brief overview of deep learning

- Overview of the field
- Where is deep learning right now?
- Spatial data + CNNs
- Temporal data + RNNs
- Training + tricks:
 - regularization and normalization

Project ideas: How can it be applied to HEP?

- Deep learning challenges for tracking / particle physics
- Learning probabilistic spatiotemporal dynamics with deep learning
- Generative modeling

References

- <u>www.deeplearningbook.org</u> -- good book
- <u>http://cs231n.github.io/</u> -- Deep learning + Computer Vision
- <u>https://cs224d.stanford.edu/</u> -- Deep learning + Natural Language Processing
- <u>https://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf</u> Hinton's RNN lecture

References -- Implementations

- Tensorflow -- <u>www.tensorflow.com</u>
- Theano -- <u>http://deeplearning.net/software/theano/</u>
- Torch -- <u>http://torch.ch/</u>

Top-level wrappers \rightarrow start here

- Keras (TF + Theano) -- <u>www.keras.io</u>
- TFLearn (TF) -- <u>http://tflearn.org/</u>
- Lasagne (Theano) -- <u>https://lasagne.readthedocs.io/en/latest/</u>

- Popular model class
 - Outperforms other model classes (kernel methods, etc.) in many applications
 - Not always the best (random forests...)
 - \circ Jungle of papers with hacks and tricks \rightarrow many things do **not** consistently work
- Implement "highly non-convex" $F : X \rightarrow Y$
- Empirical science ~ little to no theory
 - Bag of tricks

- Supervised learning ~ discriminative P(y|x)
- Unsupervised learning ~ generative models P(x)
- Semi-supervised

- Supervised learning ~ discriminative models P(y|x)
 - $\circ \quad \text{Image recognition} \rightarrow \text{CNNs}$
 - $\circ \quad \text{Sequential prediction} \rightarrow \text{RNNs}$

- Unsupervised learning ~ generative models P(x)
 - \circ Auto-encoders deterministic P(z|x) train through back-prop
 - \circ Variational methods -- stochastic z ~ P(z)
 - Generative Adversarial Networks

How do you train them?

- A neural net implements $F: X \rightarrow Y$
 - X: images, sentences, ...
 - Y: discrete classes, continuous ...
 - F: (conditional) probability,
- Training objective
 - Multi-class classification: P(y|x) -- x-ent minimization
 - Regression: L2-minimization
- In practice:
 - first overfit, then regularize
 - "Bigger / deeper is better"

How do you train them?

• Regularization

- Dropout
- L1 / L2 / ...
- Normalization
 - Batch-normalization
 - We want to train on a statioinary distribution P("input") → standardize activations!
 - Layer-normalization

Convolutional neural networks

Tasks

- Classification
- Segmentation
- Structured prediction

Basics

- Kernel, stride
- Pooling (max, average, ...)
- Neural representations: activation statistics encode predictive patterns in the input
- Neural style: activation correlation statistics encode style

Some state-of-the-art conv-nets

Benchmark datasets

- ImageNet
- MSCoco

Variations

- Inception
- ResNet

Recurrent neural networks

Basics

- Update equations
- Non-Markovian dynamics
- Hard to train on long sequences
 - Vanishing / exploding gradients

Memory in RNNs

- <u>http://colah.github.io/posts/2015-08-Unde</u> <u>rstanding-LSTMs/</u>
 - LSTM
 - GRU
- Non-Markovian dynamics
- Still hard to train on long sequences

More RNNs

• Highway networks

- NLP = learn over **flat** text
 - $\circ \quad \text{Large vocabulary} \rightarrow \text{semi-supervised / unsupervised training}$
- RNNs often are **not** that much better than Bag-of-Words models
 - Need lots of labeled data if trained from scratch
- Unsupervised training over large corpus of **unlabeled** text
 - Word vectors ~ continuous bag-of-words
 - GloVe: model co-occurrence statistics
 - Paragraph vectors
 - Language model: given word w_{t-1}, what's w_t?

- Trading space for time
 - Adaptive computation time
- Variable input \rightarrow Fixed representation
 - Question answering with RNNs
 - Fixed-length span representations
 - Seems to not be that important, attention is much more powerful
- Bidirectional RNNs

- Prediction
 - Classification: sentiment
 - Structure: Parse-trees
- Sequence-to-sequence models
 - Translation
 - Model conditional probability P(w_t | w_t_1)
 - Scheduled sampling
 - W_t-1 = previous prediction
 - W_t-1 = ground truth
- Sequence-to-sequence models + attention

- Other lessons
 - Data augmentation works... a bit
 - Label smearing
 - Multi-hop (trade space for time, very hard to train) is hard

State-of-the-art

- Unsupervised pre-training: boosts perf on problems over long input sequences
 - Pre-train as language model
 - Match statistics!
 - o calibrate hidden-hidden weights to propagate gradients over long-distance
- Batch / layer-normalization
- Dropout
 - Be careful not to stop gradients to get to distance past

ML + sports

Learning / tracking in sports

Imitation learning using tracking data

- Ball prediction
- Player movement prediction
- Hierarchical policies

Lessons

- Sparse input \rightarrow use multi-resolution
- Hierarchy is hard to train
- Multi-task to separate timescales

Unsupervised learning

Unsupervised learning

- Auto-encoders with sliding windows
- GAN -- <u>https://arxiv.org/pdf/1406.2661v1.pdf</u>
 - Hard to stabilize
 - SeqGAN -- unproven
- Vision
 - PixelCNN
 - PixelRNN

Deep learning → particle physics

Project ideas

- Can we incorporate discrete latent variables to model particle decay processes?
- Can we generate tracks that match data distribution?
- Address distributional shift \rightarrow big problem in RL, robotics, ...
- Structured, hierarchical policies

Deep learning → particle physics

Deep learning for HEP tracking

- $\bullet \quad F{:} \: X \to Y$
 - X: what does our input look like?
 - Y: what do we want to predict?
- Basketball: player / ball prediction examples
- Challenges
 - Scale
 - Sparsity of input
 - Avoid distributional shift
- What data do we need?
 - Volume
 - Format