The ORGAN Experiment

Ben McAllister Eugene Ivanov Michael Tobar
Frequency and Quantum Metrology Group, School of Physics, University of Western Australia
ARC Centre of Excellence for Engineered Quantum Systems
Motivation for high frequency haloscope

- Beck result: potential signal of axions at \(\sim 26.6 \text{ GHz (~10}^{-4}\text{ eV)} \)
- Higher frequency than typical haloscopes…or easily accessible
- Considered a spurious result by many
- Beck's hypothesis:
 Shapiro step-like features in Josephson Junctions could be as a result of axions

DOI: http://dx.doi.org/10.1103/PhysRevLett.111.231801

- No direct test of this candidate signal has been performed – seems like as good a place as any to start looking
Motivation for high frequency haloscope

- Shapiro step-like features observed in experiments [C. Homann et al. PRB 70, 180503(R) (2004)]

Beck’s Proposal: Axion entering WL region, transport of excess Cooper pairs

Motivation for high frequency haloscope

- Curiosly: g cancels

\[
B = \frac{8\pi^2 \Gamma f_a^2 d}{g \gamma \hbar c^3 e}.
\]

\[
Pa \rightarrow \gamma = \frac{1}{4\beta_a} (g \text{ Bec } L)^2 \frac{1}{4\pi \alpha} \left(\frac{\sin \frac{qL}{2\hbar}}{\frac{qL}{2\hbar}} \right)^2
\]

\[
Pa \rightarrow \gamma = \frac{1}{\beta_a h^2 c^4} (f_a \Gamma dL)^2 4\pi \alpha
\]

\[
L = \frac{\hbar c^2}{\sqrt{4\pi \alpha}} \sqrt{\beta_a} \frac{1}{f_a \Gamma d}
\]

- $L \sim 10^{-22}$ m

- We are left with a mass/frequency range: 110 ± 2 micro-eV, or 26.6 ± 0.5 GHz
High Frequency Haloscope Design

- High frequency haloscope at UWA (~26 GHz), known as ORGAN

- Multi-stage project:
 - Direct test of Beck result
 - Wider scan at high frequency
 - Novel resonators

- Designing a haloscope at high frequency is difficult

- TM Mode frequency inversely proportional to cavity size
 - Lower volume
 - Lower sensitivity
 - Lossier material

- Quantum noise limit increases

- Harder to tune, and couple to modes
High Frequency Haloscope Design

- TM010 mode almost always employed in haloscopes due to highest form factor

\[C_E = \frac{\left| \int dV \mathbf{E}_c \cdot \hat{z} \right|^2}{V \int dV | \mathbf{E}_c |^2} \]

- Measure of mode overlap with axion induced EM field
- TM010 \(\sim 0.69 \)
- High frequency \(\rightarrow \) very low volume

- We explored the possibility of higher order modes
High Frequency Haloscope Design

- TM_{010} mode offers the greatest form factor, but the lowest volume for given cavity length and frequency

- Essentially no change for given cavity length

- Other considerations:
 - Higher order modes have higher G factors at a given frequency
 - Aspect ratio problem \rightarrow Likely to be more spurious modes
 - We chose TM_{020} as the detecting mode
High Frequency Haloscope Design

- Mode crowding gets worse at higher frequency
- But, worth considering in a given length, depending on required tuning range

<table>
<thead>
<tr>
<th>Mode</th>
<th>C</th>
<th>V (cm^3)</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM010</td>
<td>0.69</td>
<td>1.45</td>
<td>386.5</td>
</tr>
<tr>
<td>TM020</td>
<td>0.13</td>
<td>7.783</td>
<td>744.6</td>
</tr>
<tr>
<td>TM030</td>
<td>0.053</td>
<td>18.87</td>
<td>1244.3</td>
</tr>
</tbody>
</table>
• Cavity dimensions:
 ~1 cm radius
 ~5 cm length
• \(\text{TM}_{020} \) Mode frequency ~26.5 GHz
• First “path-finding run” complete
 – Stationary frequency, single cavity
 – Traditional HEMT amplification
 – 4 K
 – 7 T
 – Commercial FFT
• Successful test of entire system, ready for tunable run
• Scale up sensitivity
ORGAN
Future of search

- Federal funding for 7 years, can scale up experiment
- ARC Centre of Excellence for Engineered Quantum Systems (EQuS) – expertise and assistance
- 14 T magnet
- Multiple cavity search
- Quantum or near-quantum limited amplification (JPAs, NQL HEMTs)
- Other areas we are exploring:
 - Signal processing techniques
 - Methods to increase Q factor (superconductivity, 3D printing, Bragg resonators)
 - Novel resonators (as per Mike’s talk)
Tuning

- Exploring tuning options
 - Next stage will utilize regular copper post tuning (~ 1 GHz)
 - Later stages may utilize dielectrics (ie sapphire disk)
 - Coupling of mode to other, highly tunable resonances (ie magnon modes in YIG)
Reduction in C and G makes about a factor of 2

Slightly more sensitive near the centre

Possibility of re-design moving to larger cavity numbers
Sensitivity Projection

![Graph showing sensitivity projection for axion mass vs. coupling constant](image)
Sensitivity Projection

- Aa is the search we have just run
- Ab is a planned search for the Beck range with current technology and equipment
- B, C, D, X, Y, Z represent various stages of scale-up to the experiment
- Generous scale-up projection:
 - 14 T magnet
 - 8 cavities
 - Quantum noise limited amplifier
 - Q to 1 million (axion linewidth)
Bragg Resonators

- Dielectric walls in cavity
- Air gap
- Confine modes, virtual boundary conditions
- Improve Q factor
Bragg Resonators
Bragg Resonators
Cross-correlation techniques

- High frequency cavities very small
 - Would like to combine multiple cavities
- Cross-correlation measurements are two-channel measurements which reject uncorrelated noise sources

- Cross-correlate signals from two cavities
 - Reject the uncorrelated thermal cavity noise and amplifier noise
 - Retain correlated axion signal
Cross-correlation techniques

- Define SNR as signal divided by spread of background noise, for purpose of scheme comparison

- With cross-correlation spread (standard deviation) of background noise goes down proportional to \(\frac{1}{2\sqrt{n}} \)

- Compared with \(\frac{1}{\sqrt{n}} \) for single channel

- Factor of 2 reduction in background spread, same improvement as doubling signal power by combining two cavities

- Downside: need two readouts, amps etc
Cross-correlation techniques
Cross-correlation techniques

- Real benefit achieved when synchronizing larger numbers of cavities
- Can compute “averaged cross spectrum”
- For n cavities we can compute \(\frac{n(n-1)}{2} \) independent cross spectra
- Averaging these cross-spectra produces a new spectrum
 - WISP signal of interest retained
 - Mean of thermal noise reduced
 - Standard deviation of thermal noise reduced
- Achieve \(2 \cdot \sqrt{\frac{n(n-1)}{2}} \) reduction in spread of background noise, compared with \(n \) from power combining
Cross-correlation techniques
Cross-correlation techniques

- This is not magic or free \(\rightarrow\) We have a tonne more data/readouts, this is all post-processing
- We need \(n\) readouts, rather than one
- \(n\) digitization channels
- \(n\) times as much data
- Equivalent to averaging a Wilkinson system for longer in terms of data, but we do it simultaneously
Cross-correlation techniques

- Synchronizing 4+ cavities is a long term goal of ORGAN

Cross-correlation has other uses than increasing SNR:
- Power summation of multiple cavities is difficult
- Cavities need to be inside same system, in phase
- CC measurements can be performed with cavities spatially well separated
- Characterize WISP signals e.g. coherence length

See arXiv:1510.05775v2 for more information on these techniques, update forthcoming
Conclusion

● UWA EQuS node developing multi-stage haloscope (ORGAN)
 – Direct test of Beck result at 26.6 GHz
 – Wide scanning at high frequency
 – TM_{020} mode employed
 – Search now underway
 – Planned future phases rely on experimental scale-up, new technologies and ideas

● Novel experimental techniques will improve sensitivity
 – Synchronize multiple cavities and employ cross-correlation techniques

References:
 – ORGAN Experiment: arXiv:1611.08082
 – Cross-correlation schemes: arXiv:1510.05775v2 (update forthcoming)