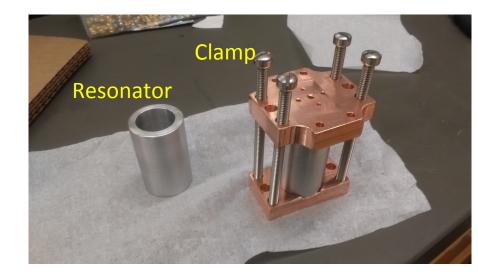
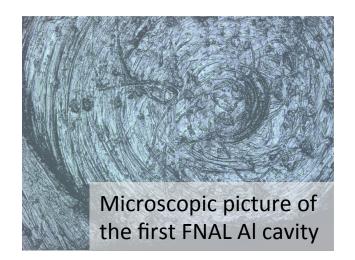

Study cavity wall material

- Conductivity theory predicts the anomalous skin effect
 - \odot Copper is the simplest conductor to demonstrate the effect
 - \circ How about Aluminum?
 - The prediction is made for the BCS theory and it is more complicate than Cu (e.g. anisotropy of the scattering of conducting electrons)
 - Presently, high-purity Aluminum is one of the most popular materials to make a quantum computer (QC)


- The test used a 11.442 GHz Al Cavity
- Purity: 99.999 %
- Critical temperature of Al: 1.2 K
 - Q = 3 10⁸ in Super Conducting RF (SRF)
 - <u>Q = 10⁵ in Normal Conducting RF (NRF)</u>
 - Dashed curve is a prediction
- Is Al better than Cu for ADMX?


Work progress

- Made several high purity Aluminum cavities

 99.99% (4N), 99.999% (5N), and 99.9999% (6N)
 Sumitomo Material provided a sample
- Collaborate with the QC group at U of Chicago
 - \circ UC is interested in a high-Q SRF
 - Observe a Q-factor for various SRF materials
 - Utilize Fermilab SRF facility to prepare an SRF cavity
 - Study a surface roughness vs a Q-factor
 - First 4N Al cavity reaches 1.7 10⁸ (Preliminary)
 - \odot ADMX is interested in a high-Q NRF
 - Measure the Q-factor of a high-purity Al cavity in a multi-Tesla magnetic field
 - Find a fridge + a multi-tesla magnet
- Looking for more collaborator and funding support

 \odot Task is halted because of short money

