Application of the Bead Perturbation Technique to a Study of a Tunable 5 GHz Annular Cavity

Nicholas Rapidis UC Berkeley

Outline

- ADMX-HF brief overview
- Cavity Characteristics
- Cavity study at Berkeley
- Future work
- Conclusion and summary

Collaboration

Yale University (experiment site)

Steve Lamoreaux, Ling Zhong, Ben Brubaker, Sid Cahn, Kelly Backes

UC Berkeley

Karl van Bibber, Maria Simanovskaia, Samantha Lewis, Jaben Root,

Saad Al Kenany, Nicholas Rapidis, Isabella Urdinaran

CU Boulder/JILA

Konrad W. Lehnert, Daniel Palken, William F. Kindel, Maxime Malnou

LLNL

Gianpaolo Carosi, Tim Shokair

Experiment at Yale

- Cu Cavity with off-axis tuning rod
- 9 T magnet
- Dilution refrigerator T~100 mK
- Josephson Parametric Amplifier, tunable from 4.4-6.4 GHz
- First data run (2016) in 5.75 GHz range (~24 μeV)

 $P_{signal} \propto B^2 VQC_{mnl}$

- Large Volume ∼2 L
 - 25.4 cm height
 - 10.2 cm diameter

Use of 5.1 cm diameter copper rod

- Large dynamic frequency range
 - $-3.4 5.8 \, \text{GHz}$

High Quality factor, Q

$$Q \propto \frac{(\text{Mode-dependent constant of order 1})*(\text{Volume})}{(\text{Surface area})*(\text{Skin Depth})}$$

- Increases at lower temperature
- Affected by rod position, coupling, intruder modes

High Form Factor, C_{mnl}

$$C_{mnl} = \frac{\left(\int d^3x \ \widehat{z} \cdot e_{mnl}^*(x)\right)^2}{V \int d^3x \ \epsilon(x) \left| e_{mnl}^*(x) \right|^2} \quad \text{in our case } \epsilon(x) = 1$$

Freedom from mode crossings

Freedom from mode crossings

- Precision metrology on current apparatus
- High Fidelity Simulations
- Precision Field Mapping using Bead-Perturbation Technique

- Precision metrology on central rod
 - Alignment of rod axis w.r.t. tubes holding it in place in the cavity
 - Better understanding of mode localization when misaligned in cavity
- Precision metrology on cavity
 - Allows for more accurate future simulations

High Fidelity Simulations

Precision Field
Mapping using BeadPerturbation
technique

Determining mode type using bead pull

Each step corresponds to an angle shift of 1.5 mrad

Mode Crossings

Mode Crossings

Data from TM_{010} mode no longer useful when mode is within ~ 3 MHz of TE mode

Mode crossings

Other noticeable mode crossings have no significant effect on TM_{010} mode

Future work

- Bead pull study on actual cavity
 - Determining usable/unusable frequencies and impact of intruder modes
 - Ultimately, *in situ* bead-pull for real time characterization of the cavity and mode during the run.
- Full 3D mapping of cavity
- Simulations confirming behavior and studying further aspects of cavity
 - Free frequency ranges
 - New designs, e.g. Photonic Band Gap Cavities

Conclusion

- Can determine type of each mode in spectrum using bead pull
- Good understanding of sensitivity to rod misalignments
- Ability to determine strength of mode crossings and determine effect on data taking

Thank you!

Questions?

