

Multiple-Cavity Detector for Axion Search

Workshop on Microwave Cavities and Detectors for Axion Research 2017. 01. 10 ~ 13, Livermore, CA

SungWoo YOUN Young Scientist Fellow Center for Axion and Precision Physics Research (CAPP) Institute for Basic Science (IBS) Republic of Korea

Multiple-Cavity Detector

2

$$P_{a \to \gamma \gamma} \sim B^2 VQC$$

Multiple-cavity detector

- Increases experimental sensitivity for axion searches in higher frequency regions
- Requires signal combination in phase: phase-matching

3

Configurations

Configurations

SNR_{sngl} = *SNR* of single cavity

$$S \bigcup_{N_C} V_{out} = G \cdot (S + N_C) + N_A \implies SNR_{sngl} = \frac{P_S}{P_N} = \frac{(G \cdot S)^2}{(G \cdot N_C + N_A)^2}$$

* Correlated signal and uncorrelated noise

** *N.F.* $_{comb} = 0$

Interior Basic Score

Configurations

	1	2	3
Schematic			
Characteristic	N complete readout chains	N amplifiers 1 combiner	1 amplifier 1 combiner
Sensitivity (SNR)	$\sqrt{N} \cdot SNR_{sngl}$	$N \cdot SNR_{sngl}$	$N \cdot SNR_{sngl}$
Pros.	Individual access	Higher sensitivity	Simpler design
Cons.	Lowest sensitivity N complete readout chains	N amplifiers	$SNR_3 < SNR_2^*$

* In reality, N.F._{comb} $\neq 0$ ex) G=12, N.F._{amp}=6, N.F._{comb}=0.5 => SNR₃ is lower than SNR₂ by 10%

Configurations

	1	2	3
Schematic			
Characteristic	N complete readout chains	N amplifiers 1 combiner	1 amplifier 1 combiner
Sensitivity (SNR)	$\sqrt{N} \cdot SNR_{sngl}$	$N \cdot SNR_{sngl}$	$N \cdot SNR_{sngl}$
Pros.	Individual access	Higher sensitivity	Simpler design
Cons.	Lowest sensitivity N complete readout chains	N amplifiers	$SNR_3 < SNR_2$

Multiple-Cavity Detector

- Introduced in 1990 and exploited by ADMX
 - KSVZ with 3.3639 < m_a [µeV] < 3.3642 excluded with 90% C.L.
- Phase-matching mechanism is challenging
 - Failure reduces signal power and degrades SNR
 - Broadens the bandwidth of power spectrum
 - Decreases the cavity quality factor
- 5 year IBS Young Scientist program is devoted to develop the system at CAPP/IBS

Design of a Multiple-Cavity System

Multiple-Cavity Detector

- Array of N identical cavities
 - Same dimension and same tuning mechanism
- N-way power combiner
 - Before the first stage of amplification
- Remaining RF components are identical with a single-cavity experiment
- A quadruple-cavity detector
 - For a magnet bore (D) of 10 cm
 - Maximum cavity radius (R) of 1.7 cm
 - Cavity wall thickness of 4 mm
 - 46% volume usage
 - TM₀₁₀ frequency: 6.75 GHz

em

Simulation Study (COMSOL)

9

Conversion Power and Scan Rate

- A quadruple-cavity system
 - 4 cavities with R = 1.7 cm and L = 10.0 cm => V = 0.35 L
- Conversion power

$$P_{a \to \gamma\gamma} = 1.8 \times 10^{-22} W \left(\frac{g_{a\gamma\gamma}}{0.97} \right) \left(\frac{\rho_a}{0.45 GeV/cc} \right) \left(\frac{f_a}{6GHz} \right)$$
$$\times \left(\frac{B_0}{8T} \right)^2 \left(\frac{V}{0.35L} \right) \left(\frac{C}{0.5} \right) \left(\frac{Q_l}{Q_a} \right)$$

Scan rate

$$\frac{df}{dt} = \frac{16.3MHz}{year} \left(\frac{4}{SNR}\right)^2 \left(\frac{g_{a\gamma\gamma}}{0.97}\right)^4 \left(\frac{\rho_a}{0.45GeV/cc}\right)^2 \left(\frac{f_a}{6GHz}\right)^2 \times \left(\frac{B_0}{8T}\right)^4 \left(\frac{V}{0.35L}\right)^2 \left(\frac{C}{0.5}\right)^2 \left(\frac{4.5K}{T_{sys}}\right)^2 \left(\frac{Q_l}{Q_a}\right)$$

Phase (Frequency) Matching

- Source of frequency mismatch
 - Machining tolerance in cavity fabrication
 - 50 µm => 25 MHz for a 6 GHz cavity
- Ideal frequency matching is not possible!
 - Typical step size ≠ 0°: 0.1 m° => 0.5 kHz
- Realistic approach: Frequency mismatch!
 - Up to a certain level where a reduction in the "combined" power is not significant
 - Frequency Matching Tolerance, FMT

Phase (Frequency) Matching

- Source of frequency mismatch
 - Machining tolerance in cavity fabrication
 - 50 µm => 25 MHz for a 6 GHz cavity
- Ideal frequency matching is not possible!
 - Typical step size ≠ 0°: 0.1 m° => 0.5 kHz
- Realistic approach: Frequency mismatch!
 - Up to a certain level where a reduction in the "combined" power is not significant
 - Frequency Matching Tolerance, FMT
 - Criteria : P_{comb} > 0.95 P_{ideal}

Frequency Matching Tolerance – I

- Pseudo-experiment study
 - 4-cavity detector, $Q_u = 10^5$, $f_0 = 6 \text{ GHz}$
 - Tolerance Under Test (TUT) = (0,) 10, 20 ,30, 60, 100, 200 kHz
 - Combined power spectra
 - 1000 pseudo-experiments => averaged power spectra

Power amplitude from each cavity is normalized to 1.

Frequency Matching Tolerance – II

- For 6.0 GHz axion signal, 4-cavity detector with $Q_u = 10^5$
 - 20 kHz is the FMT for the system
- In general, FMT = 2 GHz / Q_u
 - For $Q_u = 10^6$, FMT = 2 kHz
 - cf. typical step size of 0.1 m° => frequency step: 0.5 kHz

Tuning Mechanism – I

- Basic principle of coupling critical coupling
 - Minimizing the reflection coefficient (Γ) in S parameter spectrum
 - Forming a circle passing through the center of the smith chart

• For a single cavity

- Γ is minimized when
 - System is critically coupled
- For a multiple-cavity system
 - Combined Γ is minimized when
 - Frequency matching is successful
 - Entire system is critically coupled

interior Basic Scene

Consisting of three steps

Tuning Mechanism – II

- 1) simultaneous operation of the tuning systems
 - To shift target frequency
- 2) finer operation of the individual tuning systems
 - To achieve frequency matching
- 3) global operation of the couplers
 - To achieve critical coupling
 - At the sacrifice of sensitivity loss of <0.5%*

* Machining tolerance of 50 µm and uncertainty on surface conductivity of 2%

Experimental Demonstration

- Double-cavity
 - O.D.= 5.08 cm
 - *I.D.* = 3.88 cm
 - $f_{TM010} = 5.92 \text{ GHz}$
 - Q_L = 9,000 at RT
- Tuning system
 - Dielectric rods (95% alumina)
 - *f*_{TM010} = 4.54 GHz at center
 - Q_L = 2,500 at RT
 - Two rotators (ANR240)
 - Frequency tuning
 - One linear positioner (ANPz101eXT12)
 - Global operation of two couplers

Sequence of Demonstration

- Using a double-cavity system with a combiner
 - Calibrate the system up to the two antennas
- Critical coupling of each cavity separately at slightly different resonant frequencies
 - Measure the initial Q (and S₁₁) values
- Assembly of the full system
 - Two (small) reflection peaks and double (small) circles

18

SungWoo YOUN

Sequence of Demonstration

- Using a double-cavity system with a combiner
 - Calibrate the system up to the two antennas
- Critical coupling of each cavity separately at slightly different resonant frequencies
 - Measure the initial Q (and S_{11}) values
- Assembly of the full system
 - Two (small) reflection peaks and double (small) circles
- Operate a rotator
 - For frequency matching
 - Two peaks become one and minimized / two circles become one and maximized
- Operate the linear positioner
 - For critical coupling
 - Reflection peak becomes further deeper / smith circle passes through the center
- Compare the (combined) Q (and S_{11}) value with the initial ones

Critical Coupling (Cavity I)

Assembly of Full System

Frequency Matching – Rotator

Critical Coupling – Linear

June

25

Tuning Mechanism – Movie

Project Plan

Multiple stages

- Depending on cavity multiplicity (#) and cavity quality factor
- 1st stage: double-cavity with $Q_u = 10^4$
- 2^{nd} stage: quadruple-cavity with $Q_u = 10^4$
- 3rd stage: quadruple-cavity with Q_u=10⁶
- Final stage: septuplet-cavity with Q_u=10⁶
 - R=1.3 cm, f(TM₀₁₀)=~9 GHz (with a dielectric tuning rod)

Design & Procurement

Construction & Test at RT

Commissioning at CR

26

Operation & Analysis

27

Summary

- Multiple-cavity detector
 - Increases the sensitivity for axion search in higher frequency region
- Basic design: signal combination preceding amplification
 - Simpler setup with minimal sensitivity degradation
- Realistic approach for phase (frequency) matching
 - Frequency mismatch within FMT (P_{comb} > 0.95 P_{ideal})
 - $FMT = 2 GHz / Q_u$ for 6 GHz axion
- Tuning mechanism
 - To achieve frequency matching and critical coupling
- Experimental demonstration

Backups

n the grant of the second

SNR – Configuration 1

Multiple chains

$$SNR_{ind} = SNR_{sngl}$$
$$SNR_{1} = \sqrt{2} \cdot SNR_{sngl}$$

S : signal voltage N_C: cavity noise voltage G : amplifier gain N_A: amplifier noise voltage

 $V_{out} = \frac{1}{\sqrt{2}} \cdot \left[2 \cdot G \cdot S + \sqrt{2} \cdot \left(G \cdot N_c + N_A \right) \right]$ $SNR_2 = \frac{\left(\sqrt{2} \cdot G \cdot S \right)^2}{\left(G \cdot N_c + N_A \right)^2} = 2 \cdot SNR_{sngl}$

S : signal voltage N_C : cavity noise voltage G : amplifier gain N_A : amplifier noise voltage

Noise from the combiner is assumed to be negligible. Signal is correlated while noise is uncorrelated. Voltage adds in sqrt. 30

31

SNR – Configuration 3

Combination + amplification

S : signal voltage N_C: cavity noise voltage G : amplifier gain N_A: amplifier noise voltage

Noise from the combiner is assumed to be negligible. Signal is correlated while noise is uncorrelated. Voltage adds in sqrt.

Phase-locking (Time)

- Source of phase mismatch at the combiner
 - Different cable lengths between individual cavities and the combiner
- NOTE: Ideal phase matching is difficult!
 - Exactly same length of cables
 - More realistic to keep the phases within a certain range
 - Phase Matching Tolerance, PMT
 - Acceptable as long as the reduction in combined power (or SNR) is not significant

Phase-locking (Time)

- Determining the PMT
 - Consider a tolerance (tolerance under test, TUT)
 - Assume that individual signals have phases (φ_i) within the tolerance, i.e. $|\varphi_i \varphi_0| < TUT$ when arriving at the combiner
 - If the combined power is >95% of the ideal case, i.e. $\varphi_i = \varphi_0$ or TUT=0, then take the TUT as the PMT Co
- Pseudo-experiment study
 - 4-cavity detector, $f_0=6$ GHz, $Q_u=10^5$
 - $TUT = (0,) \pi/16, \pi/8, \pi/4, \pi/2, \pi/\sqrt{2}, \pi$
 - 1000 pseudo-experiments

 ϕ_0 : leading frequency

34

Junu Jeong

TUT = 0 rad

 $TUT = \pi/4$ rad

5.9996×10⁹ 5.9998×10⁹ 6.0000×10⁹ 6.0002×10⁹ 6.0004×10⁹

Frequency (Hz)

Frequency (Hz) Power amplitude from each cavity is normalized to 1.

Tolerance Under Test (rad)

Pseudo-experiment Study – Summary

TUT (rad)	Power Amp.	Q _u	SNR	Sensi- tivity
0	1.00	1.00	1.00	1.00
π/16	0.99	1.00	0.99	0.98
π/8	0.96	1.00	0.96	0.93
π/4	0.86	1.00	0.86	0.75
π/2	0.54	1.00	0.54	0.29
π	0.25	1.00	0.25	0.06

Tolerance Under Test (rad)

- For 6.0 GHz axion signal, 4-cavity detector with $Q_u = 10^5$
 - $\pi/8$ rad is the PMT for this system
 - This corresponds to $\Delta I = \sim 3 \text{ mm} (\lambda = 5 \text{ cm})$
- In general, ΔI = 1/16*c/f
 - For 10 GHz, ΔI = ~2 mm
 - Can be under good control

- **Isolating Termination Dissipation**
- Isolating terminations enable the dissipation of power due to various unbalances and possible input failures

- Schematic representation of four 250 W amplifiers feeding a 4-way combiner
- Power output and power dissipation associated with various input failure scenarios

Multiple-Cavity Detector

CAST-CAPP/IBS

38

Tuning Mechanism – Movie

Comment on Magnetic Form Factor C_B

- "Axion Dark Matter Coupling to Resonant Photons via Magnetic Field"
 - B. T. McAllister et al. (PRL 116, 161804)
 - Magnetic coupling (form factor) is not constant: $C_B = C_B(e)$

$$C_{B} = \frac{\frac{w_{c}^{2}}{c^{2}} \left| \int dV_{c} \frac{r}{2} \vec{B}_{c} \cdot \hat{\phi} \right|^{2}}{V \int dV_{c} \left|B_{c}\right|^{2}}, \quad \vec{B}_{c} = \vec{B}_{c}(r_{c})\hat{\phi}_{c} \equiv B_{c,\phi_{c}}\hat{\phi}_{c}$$

$$\hat{\phi}_{c} \cdot \hat{\phi} = \cos(\phi_{c} - \phi) = \frac{1}{r}[r_{c} + e\cos\phi_{c}] \quad vs. \quad \hat{\phi}_{c} \cdot \hat{\phi} = \frac{1}{r}[r + e\cos\phi]$$

$$\Rightarrow C_{B} = \frac{\frac{w_{c}^{2}}{c^{2}} \left| \int dV_{c} \vec{B}_{c,\phi_{c}} \frac{r_{c} + e\cos\phi_{c}}{2} \right|^{2}}{V \int dV_{c} \left|B_{c}\right|^{2}} \quad vs. \quad C_{B} = \frac{\frac{w_{c}^{2}}{c^{2}} \left| \int dV_{c} \vec{B}_{c,\phi_{c}} \frac{r + e\cos\phi_{c}}{2} \right|^{2}}{V \int dV_{c} \left|B_{c}\right|^{2}}$$

$$CB \text{ is constant with offset for all TM0n0 modes}$$

Comment: S. L et al. (<u>arXiv:1606.09504</u>) Erratum: B. T. McAllister et al. (<u>PRL 117, 159901</u>)