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Motivation

Design Goals

- EXperiment to search high frequency regions

(4-7 GHz)

- Rapid prototyping with on-hand materials

- Cavity Is reasonably simple to tune (e.qg.
manageable mode crossings )

- Lay foundations for experiments that rely on
dielectrics ( very high freqguency searches )



Motivation The P.D.L.R. Design

o e T ([, E-BdV)
- Makes use of dielectric X —
media inside a resonant jv Y fv B2dV

cavity

- Dielectric media
compresses
wavenumber — prevents
form-factor integral from
going to zero




Motivation Laying Foundations

- Resonant cavities that use dielectrics are
difficult to tune — dielectrics have to be moved

IN Uunison

- Tuning procedures developed by Electric Tiger
can be used by these types of experiments
( e.g. Orpheus)
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Implementation Construction of Cavity

stationary antenna, one movable

&

- Rectangular waveguide with one ‘ w‘ A

»

- Dielectric media is provided by
three nylon blocks

- Tuning is provided by scissor-jack [ ¢
and stepper motor driving auger |
screw

- Cavity length is measured by
string potentiometer

- Cavity design limits mode Quality
Factor



Implementation Magnetic Field

- Rectangular cavity geometry
permits use of constant z-
axis magnetic field

- Magnetic field provided by
1.54 Tesla DC Magnet




Cavity Structure

Implementation (Transmission)
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- Cavity has a non-trivial amount of static structure

- Modes are broad and amplitude is not always significantly
higher than static structure



Cavity Structure

Implementation (Transmission)
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- Simulations of cavity determines mode that couples best with
axion field

- Mode moves over a wide frequency range, ~3.5 — 6.5 GHz,
Including regions currently blocked by RF components



Implementation Transmission
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- Static structure In transmission measurements

makes modes difficult to follow

- Q’s of ~ 250
- Traditional approaches (e.g. Lorentzian fitting) are

unsuitable



Implementation Reflection

' Reflection
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- Reflection modes show much less static structure

- Strategy: ldentify and follow modes In reflection,
switch to transmission to take data



Implementation

Filtering

- Even In reflection,
traditional mode-tracking
techniques are not
appropriate

- Simple band-pass filters
either suppress actual
peaks, or amplify static
structure

- Solution: Use non-linear
filters — suppress noise
while preserving peaks
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Implementation Non-Linear Filters

Bilateral filter weights at the central pixel

- Mode Identification scheme
only needs heuristic idea of
what a peak Is

- Criteriais ~f[n] <0 &
f[n+1] >0

- Since we only need a loose
iIdea of what a peak is,
namely that it is ‘sharp’, we

can use filters that do not frgn)y= > f(k)g(f(n) = f(k)h(n— k)
linearly modify signal k=—M
power

Let G, and G, be Gaussians with o4 and o, respectively

- Use bilateral filter, a Z £
specific example of a non- "
linear convolution

Go (f(n)— f(k)Gy.(n— k)

k=—M



Implementation Non-Linear Filters

Ffy 2 Ly s
Original Gaussian Blur Bilateral Filter
- Effects of Bilateral filter are more obvious when looking at 2D figures

- Low-pass filters ( Gaussian Blurs ) suppress noise, but erase features

- Bilateral filter suppresses noise while preserving edges



Thoughts on Mode

Implementation Maps

Why not rely on the mode map
alone?
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Data Collection Preliminary Results

- Initial data run performed at room temperature

- Exclusion limits set in 4-4.2 GHz Range using
rudimentary equipment

- Sensitivities of ~107°

- Mode tracking scheme was able to follow modes
throughout tunable range

- Experiment ran autonomously for ~8 days



Data Collection Preliminary Results
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Data Collection Next Steps

Axion Mass (peV)
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Projected Sensitivity for 8 week integration time

Initial data run made use of Signal Analyzer — collected ~10° points per
spectra, averaged ~10* signals

Next data run will make use of digitizer — 10° points per spectra, virtually
unlimited number of averages

Longer integration times

Cryogenic temperatures



“Side Effects”

High Performance
Signal Processing

- Wide band-widths and fast

digitization rates require

very fast data processing

- Use GPU for signal
processing operations to

keep up with data stream

- GPU - accelerated
methods are completely

general and can be used

by other experiments
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“Side Effects”

Analysis Procedures

- Analysis procedure
developed by Electric
Tiger Is generic

- Applicable to wide variety
of resonate cavity
searches

- May be Incorporated into
ADMX analysis In the
near future

Algorithm 7 Construction of the Grand Spectrum

Input: S
1: Let k= | (finaz — fmin)/bw]
2: Let GS = 02,/{
3: for each £ do

4: Let feenter < center frequency of bin &
5; for cach s € S do
6: if  feonter € Q1 then
i j < bin at w; (feenter)
8: if GS1,#0 then
9: Let 5 + W
10: Let 7 « 5s ( 35.G)2
11: GS1 4 +GO AR RS (9)
12: GSQ k< in
13: else GSy ;. =0
14: GSl,k Sk
15: GSQ’]{ < S2.k
16: end if
17: else foenter & €2
18: continue
19: end if
20: end for
21: end for

Output: GS




Conclusion The two roles of
oncid Electric Tiger
RS Transmission
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- Platform to address concerns raised by other searches

- Electric Tiger is validation of the P.D.L.R. Design — will search
In unexplored axion-like particle parameter space



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

