

Searching Axions through coupling with spin: the QUAX experiment

Nicolò Crescini Università di Padova, Laboratori Nazionali di Legnaro for the QUAX collaboration January 12th 2017

nicolo.crescini@phd.unipd.it

Introduction

- 1. Introduction
- 2. Axion-Spin interaction

Axionic field acting on magnetized materials: the effective magnetic field.

3. Dark matter properties

Experimental hypothesis and features of the axionic "wind".

4. Cavity detection and hybridization

Combining the ESR with the resonances of a microwave cavity.

5. First experimental results

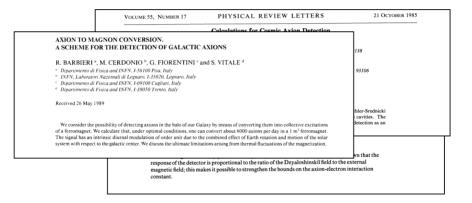
Cavity-sample coupling and noise measurement.

6. Limitation and possibilities

SQL and linear amplification vs. single microwave photon counter.

7. Conclusions

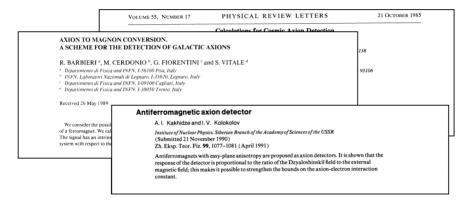
L Introduction


Theoretical suggestions

VOLUME 55, NUMBER 17	PHYSICAL REVIEW LETTERS	21 October 1985
	Calculations for Cosmic Axion Detection	
Lyman Lo	Lawrence Krauss ^(a) boratory of Physics, Harvard University, Cambridge, Massachusetts	02138
Institute for 2	John Moody and Frank Wilczek Theoretical Physics, University of California, Santa Barbara, Califor	nia 93106
	and	
	Donald E. Morris Lawrence Berkeley Laboratory, Berkeley, California 94720 (Received 30 July 1985)	
axions, of power rate importance of the gal	es and signal temperatures for axion-photon conversion in microw lactic-halo axion line shape is emphasized. We mention spin-coupl	ave cavities. The
		vn that the
magnetic field; this ma	or is proportional to the ratio of the Dzyaloshinskiĭ field to the akes it possible to strengthen the bounds on the axion-electron	external interaction
	Lyman Le Institute for Axions, of power and axions, of power and alternative to magne alternative to magne the discuss the ultimate limit galactic center. We discuss the ultimate limit response of the detect	Calculations for Cosmic Axion Detection Lawrence Krauss ^(a) Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts John Moody and Frank Wiczek Institute for Theoretical Physics, University of Calfornia, Santa Barbara, Calfor and Donald E. Morris Laurence Berkeley Laboratory, Berkeley, California 94720 UReaved 30 July 1985. We present calculations using properly normalized couplings and masses for Dine-F axions, of power rates and signal temperatures for axion-photon conversion in microw importance of the galactic-halo axion line shape is emphasized. We mention spin-couple alternative to magnetic-field - combined effection of the bayaloshinskii field to the galactic center. We discuss the ultimate limitations arising from thermal fluctuations of the magnetization. response of the detector is proportional to the ratio of the Dzyaloshinskii field to the magnetic field, this makes it possible to strengthem the bounds on the axion-electron

First paper: 1985 by L.M. Krauss, J. Moody, F. Wilczek, D.E. Morris.

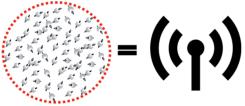
L Introduction


Theoretical suggestions

Second paper: 1986 by R. Barbieri, M. Cerdonio, G. Fiorentini, S. Vitale.

L Introduction

Theoretical suggestions

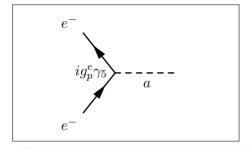

Third paper: 1991 by A.I. Kakhizde, I.V. Kolokolov.

Axion-spin interaction

Interaction with matter

Axions interacts with ordinary matter :

- Interaction with photons (Primakoff and inverse Primakoff effects)
- ► Interaction with electronic spin (only DFSZ)


L.M. Krauss, J. Moody, F. Wilczek, D.E. Morris, *Spin coupled axion detections* (1985) R. Barbieri, M. Cerdonio, G. Fiorentini, S. Vitale, Phys. Lett. B 226, 357 (1989) A.I. Kakhizde, I.V. Kolokolov, Sov. Phys, JETP 72 598 (1991)

The interaction can change the magnetization in a magnetized sample. \downarrow It can be treated as an effective magnetic field.

Axion-spin interaction

Axion-fermion interaction is described by

$$\mathcal{L} = \bar{\psi}(x)(i\hbar\partial - mc)\psi(x) - ig_p a(x)\bar{\psi}(x)\gamma_5\psi(x)$$

Using non-relativistic Euler-Lagrange

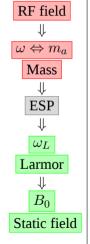
$$i\hbar\partial_t\varphi = \Big[-rac{\hbar^2}{2m}\nabla^2 - rac{g_p\hbar}{2m}\boldsymbol{\sigma}\cdot\boldsymbol{\nabla}a\Big]\varphi,$$

where the interaction term is

$$-\frac{g_p\hbar}{2m}\boldsymbol{\sigma}\cdot\boldsymbol{\nabla}a \equiv -2\frac{\hbar e}{2m}\boldsymbol{\sigma}\cdot\left(\frac{g_p}{2e}\right)\boldsymbol{\nabla}a$$

 $\frac{\hbar e}{2m} = \mu_B$ is Bohr's magneton, describing the behavior of the spin.

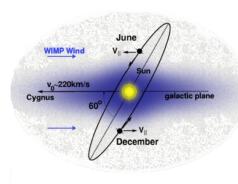
 $B_a = \frac{g_p}{2e} \nabla a$ is the axion effective magnetic field, which acts on the sample.


 $\nabla a \neq 0 \Rightarrow \beta \neq 0$

Axion-spin interaction

How to tune the receiver: ESR

For an axion mass of $\sim 200 \,\mu\text{eV}$, $m_a c^2 = \hbar\omega \Rightarrow \omega/2\pi \sim 48 \,\text{GHz}$ The effective magnetic field $B_a = \frac{g_p}{2e} \nabla a$ is actually an RF field. The sample is tuned at a chosen ω_L with a static field B_0 Ν $m_s = -1/2$ axion wind 2 Energy $\Delta E = E_{-1/2} - E_{+1/2}$ $m_s = +1/2$ S $B_0 = 0$ $B_0 \neq 0$ Magnetic Field For example, $\omega_L/2\pi = 48 \text{ GHz} \Rightarrow B_0 = 1.7 \text{ T}$



L Dark Matter properties

Axion background

What are the features of this effective field B_a ? An earth-based laboratory is moving in a dark matter (hp: axions) halo.

The so-called "axion wind" provides:

1.
$$\beta \simeq 10^{-3}$$

2. $\lambda = \frac{\hbar}{m_a \beta c} \gg \lambda_{exp}$
3. $Q_a \simeq 2 \cdot 10^6$

That is:

1. $\nabla a \neq 0$

- 2. coherent axion field interaction
- 3. natural figure of merit

Dark Matter properties

0.2

01 0

3

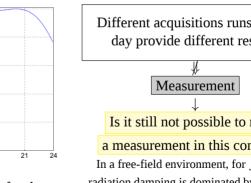
6

Signal signature

It also provides a signature 0.8 0.6 ŧ 0.4

Daily modulation of the axion flux for the QUAX detector located at Legnaro (PD)

12


Time (h)

15

18

9

Different acquisitions runs during day provide different results. Measurement Is it still not possible to make a measurement in this condition In a free-field environment, for $f \geq GHz$, radiation damping is dominated by magnetic dipole emission from magnetized the sample.

Cavity detection and hybridization

Radiation damping and microwave cavities

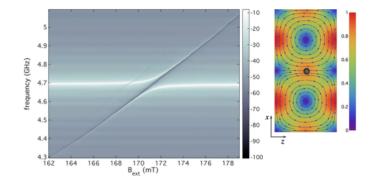
The axion-electron interaction is extremely weak $g_p^e \sim 10^{-13} \,\text{GeV}^{-1}$ The signal is anomalous oscillations of the magnetization $oldsymbol{M}$ $B \sim 10^{-22} \, \mathrm{T}$ The dynamics is described by Bloch's equations:
$$\begin{split} \frac{\mathrm{d}M_x}{\mathrm{d}t} &= \gamma (\boldsymbol{M} \cdot \boldsymbol{B})_x - \frac{M_x}{\tau_2} - \frac{M_x M_z}{M_0 \tau_r} \\ \frac{\mathrm{d}M_y}{\mathrm{d}t} &= \gamma (\boldsymbol{M} \cdot \boldsymbol{B})_y - \frac{M_y}{\tau_2} - \frac{M_y M_z}{M_0 \tau_r} \\ \frac{\mathrm{d}M_z}{\mathrm{d}t} &= \gamma (\boldsymbol{M} \cdot \boldsymbol{B})_z - \frac{M_0 - M_z}{\tau_1} - \frac{M_x^2 + M_y^2}{M_0 \tau_r} \end{split}$$
Relaxation times: \succ τ_r = radiation damping • $\tau_1 =$ longitudinal (spin-lattice)

 \succ τ_2 = transverse (spin-spin)

In free field the maximum allowed coherence is limited by τ_r

Limited phase space \Rightarrow inhibition of the damping mechanism $\downarrow \downarrow$ Sample embedded in a microwave cavity: $\tau_{\min} = \min(\tau_a, \tau_c, \tau_2)$

$$\begin{split} \frac{\mathrm{d}M_x}{\mathrm{d}t} &= \gamma M_y B_0 - \frac{M_x}{\tau_2} - \frac{M_x}{\tau_2} \\ \frac{\mathrm{d}M_y}{\mathrm{d}t} &= \gamma (M_z K I -) M_x B_0 - \frac{M_y}{\tau_2} \\ \frac{\mathrm{d}M_z}{\mathrm{d}t} &= -\gamma K' I M_y - \frac{M_0 - M_z}{\tau_1} \\ L \frac{\mathrm{d}I}{\mathrm{d}t} &= K \frac{\mathrm{d}M_x}{\mathrm{d}t} - R I - \frac{1}{C} \int_0^t I \mathrm{d}t + V_{\mathrm{rf}} \end{split}$$


New Bloch equation:

- ► *R*,*L*,*C* cavity parameters
- *K* and *K'* are geometrical coupling factors
- $I = B_1/K'$ is the equivalent current generating B_1 field

N. Bloembergen and R. V. Pound, Phys. Rev. **95**, 8 (1954)

Cavity detection and hybridization

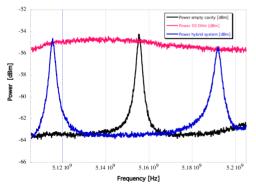
Strong coupling regime \Rightarrow equations can be solved \Rightarrow hybridization $\omega_c \simeq \omega_L$

The radiation damping contributes to the frequency separation of the cavity and kittel modes.

$$S_{21}(\omega) \simeq \frac{1}{i(\omega - \omega_c) - \frac{k_c}{2} + \frac{|g_m|^2}{i(\omega - \omega_m) - k_m/2}}$$

 $k_m = 1/\tau_2, \ k_c = 1/\tau_c, \ k_h = (k_c + k_m)/2$ g_m = coupling strength (volume, # spins)

Cavity detection and hybridization


The signal is an excess of magnetization driven by the axion field.

Experimental results

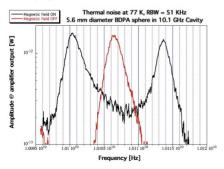
First experimental results

First measures with a YIG sphere coupled to the cavity \rightarrow No excess noise

Next step: cryogenic measurements

YIG properties:

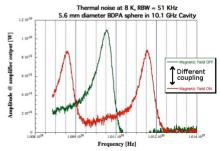
Ferrimagnet


• High spin density
$$n_S = 10^{28} \text{ m}^{-3}$$

↓ Good coupling strength achieved

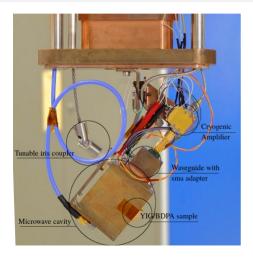
Experimental results

First cryogenic measures with BDPA

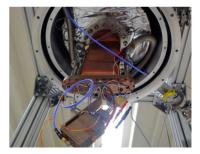


Thermal noise spectra at lower \boldsymbol{T}

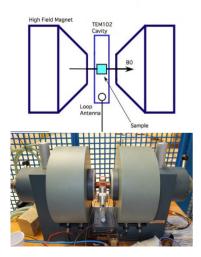
BDPA properties:


- paramagnet
- high spin density $n_S = 10^{27} \,\mathrm{m}^{-3}$

Lower coupling caused by lower spin density and sample volume.


Experimental results

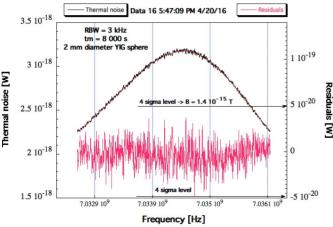
Experimental apparatus (inner parts)


Pictures of the apparatus, with the \leftarrow different parts labelled.

Bottom view of the apparatus housed into the cryostat. \downarrow

Experimental results

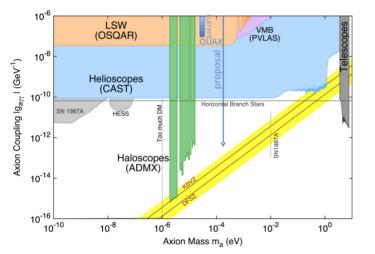
Experimental apparatus (outer parts)

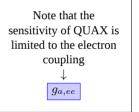

 \leftarrow Static magnetic field with electromagnets and full apparatus. \downarrow

Experimental results

A preliminary measurement

The axion search is performed averaging subsequent power spectra $@T_{room}$:


The axion signal is a sharp peak over the resonance spectra, $Q_a \simeq 2 \cdot 10^6$. An analysis of the residuals provides the measured limit. This measure requires magnetic field stability at the $1/Q_c$ level over the entire integration time.


Searching Axions through coupling with spin: the QUAX experiment

2nd Workshop on Microwave Cavities and Detectors for Axion Research - LLNL

Experimental results

Comparison in the axion-photon coupling space: previously reported measures and proposed sensitivity.

This figure has the only purpose of make a comparison with different experiments.

Future developments

Linear amplification

Axion signal peak $\Delta \omega_a/2\pi$ Detected with a RBW = $\Delta f = \Delta \omega_a / 2\pi$ How far can a linear amplifier go?

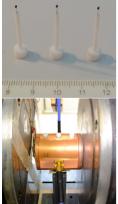
$$\begin{split} P_{\min}^{\text{thermal}} &= 2k_B T \sqrt{\frac{\Delta f}{t}} \simeq 5 \times 10^{-25} \, \text{W} \\ P_{\min}^{\text{SQL}} &= \hbar \omega_a \sqrt{\frac{\Delta f}{t}} \simeq 5 \times 10^{-24} \, \text{W} \leftarrow \text{larger} \end{split}$$

$$T=10\,\mathrm{mK},\,\Delta f=30\,\mathrm{kHz},\,t=10^4\,\mathrm{s},\,\omega_a/2\pi=30\,\mathrm{GHz}$$

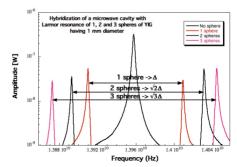
The Standard Quantum Limit limits the sensitivity of a linear amplification.

Or we can reduce the noise level

The way to the single microwave photon counter to detect spin-flip photons



Future developments


Increasing the power

Increasing the signal rate \Rightarrow increasing the volume of the sample

The use of multiple YIG spheres has been tested at room temperature

14 GHz cylindrical cavity (design by David Alesini) inside a static magnetic field parallel to the cavity axis

Future developments

The way to the quantum counter

The average power $P_{\rm in}$ absorbed by the material from the axion wind is

$$P_{\rm in} = B_a \frac{\mathrm{d}M_a}{\mathrm{d}t} V = \gamma \mu_B n_S \omega_a B_a^2 \tau_{\rm min} V$$

With an antenna critically coupled $P_{in}/2$ is collected as rf radiation.

$$P_{\text{out}} = \frac{P_{\text{in}}}{2} = 3.8 \times 10^{-26} \left(\frac{m_a}{200\,\mu\text{eV}}\right) \left(\frac{V}{100\,\text{cm}^3}\right) \left(\frac{n_S}{2 \cdot 10^{28}/\text{m}^3}\right) \left(\frac{\tau_{\text{min}}}{2\,\mu\text{s}}\right) \text{W}$$

That is a single 48 GHz photon , emitted with a rate $R_a = 10^{-3}$ Hz .

Note: switching to TE110 or TE120 mode of a rectangular cavity, the QUAX apparatus can detect Primakoff or spin flip photons, distinguishing DFSZ and KSVZ axions.

Conclusions

Conclusions

Features searched in a SMPD:

- Possibility of performing real-time measurements
- Very low dark count ($\sim 0.1 \, \text{Hz}$)

Currently working on:

Study of the materials

behaviour of materials (YIG, BDPA and other paramagnets) at low temperatures.

Cavity in a magnetic field

design of a high-Q ($\sim 10^5$) cavity with a geometry useful to maximize the signal.

External field

realization of a highly uniform magnetic field (up to 10ppm for a 2 T field).

The R&D phase of the project is approved and will last 2-3 more years. If the goals are reached the building of the final apparatus will start.

Conclusions

Reference and collaboration

Details of the experiment are described in: R. Barbieri et al, "Searching for galactic axions through magnetized media: the QUAX proposal" http://arxiv.org/abs/1606.02201

This is a collaboration between Laboratori Nazionali di Legnaro, University of Padova, Laboratori Nazionali di Frascati, University of Salerno and University of Birmingham.

Thank you for your time.