Speaker
Samantha Lewis
(University of California - Berkeley)
Description
Haloscopic axion searches require the tuning of a TM mode in a microwave cavity. Traditional cavities contain many unwanted modes which can result in mode crossings, ultimately reducing the effective tuning range of a cavity and slowing scan rates. Photonic band gap (PBG) structures have the potential to create resonators without TE modes, allowing for uninterrupted tuning. A tunable PBG structure has been designed for ADMX-HF. A prototype has been built and tested to validate simulations. Results of the fixed frequency case will be shown as well as details of the expected tuning.
This work was supported under the auspices of the National Science Foundation, under grants PHY-1067242 and PHY-1306729and the Heising-Simons Foundation under grant 2014-182.
Primary author
Samantha Lewis
(University of California - Berkeley)